With the development of observation satellite, precision lathe and lithography, the demand for high-precision three-degree of freedom (3-DOF) angle measurement instruments is becoming increasingly urgent. Laser measurement has the advantages of high accuracy, non-contact, and large measurement range and is widely used in this area. We established a 3-DOF angle measurement method using two lasers and set a new algorithm to decouple its mathematical model. We analyzed the factors that may affect the resolution of this method, and achieved the simultaneous measurement of pitch, yaw, and roll angles in theory. Our method has high resolution theoretically and does not have the problem of inconsistent coordinate references.
A new optical read-out system based on three groups of L-shape 3-axis interferometer is proposed to measure 6-degrees-of-freedom (6-DoF) of the test mass (TM) in the gravitational wave (GW) detection missions. In this system, the source laser is firstly divided into three parts to detect the displacement of the three perpendicular planes of the TM. To decouple the translations and rotations with respect to the XYZ axis, each part of the laser is further applied as the source of the L-shape 3-axis interferometer for the posture detection of each plane. The results of the numerical simulation showed that the solution accuracy of the translation and rotation are better than ±2×10-2 pm and ±3×10-5 nrad respectively, proving the computational accuracy is sufficient for the project requirements. The works above will provide a theoretical basis of the optical read-out system for the space-based GW detection mission.
Quantitative determination of dimensional properties like length, diameter, height, etc. is essential in research, development and in production process control. To meet these requirements, the widely used approach is the coordinate measurement technique. The equipments - the coordinate measuring machines (CMMs) – using the mentioned technique cover a wide measurement range from meter to nanometer. Below a newly developed equipment for the micro scale is presented. The system – the micro coordinate measuring machines (μCMM) - consists of a probing system, voice coil based actuators and an integrated interferometric measurement system. The key component - in addition to the probing system – is the positioning stage, since the characteristics of the position acquisition and control directly influences the achievable accuracy of the complete measurement system. In contrast to a standard interferometer the presented system utilizes a 2D CMOS image sensor to capture the measurement signal. To drive the stage, a commercial voice coil actuator is used: the scanning range of the introduced system covers about 15 mm, and can be easily extended. The applied probing system uses a ruby ball stylus probe. It is a measuring probe, which means that it provides a signal corresponding to the occurring deflections of the probe ball for all three spatial directions. The probe achieves nanometer resolution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.