For expanding the measurement range and improvement of accuracy of multi-axes grating encoder, a mathematical model of measurement angle and diffraction spot with QPD was established. We proposed a light spot position calculation method with consideration of both the optimized composite algorithm of laser beam feature of Gaussian distribution and the QPD diagonal algorithm. In this method, we use the piecewise polynomial fitting method to fit and solved the parameters of the traditional Infinite integral algorithm and the Boltzmann function fitting algorithm. Meanwhile, we introduce a weight factor and use the Composite algorithm to compensate the spot position error. Based on the given QPD model and the basic parameters of the laser beam, simulation works are carried out and results show that the maximum error of the spot position can reduce to be an order of 10-6 mm within the 2 mm measurement range using piecewise cubic polynomial fitting, around 10% of the traditional methods.
For solving the problem of sub-mirror installation and posture monitoring and compensation, an absolute four-degree-of-freedom (DOF) grating encoder that is able to monitor four degrees of freedom's absolute position and pose in the θx, θy, θz, and z-direction is proposed. In this grating encoder, a grating reflector and three quadrant photodetectors (QPD) are employed and an optical path is configured based on the laser autocollimation principle. A model for the solution of the four-DOF motions from outputs of the three QPDs is established. A calibration method for the identification of the relationships between the absolute positions and QPDs outputs is proposed. A prototype four-DOF grating encoder is constructed for verification of this proposal. Test results demonstrated that the method proposed in this research can achieve absolute position distinguishing with a sub-arcsecond and sub-micrometer accuracy in rotation angles and z-direction, respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.