Recommender systems seek to predict the interest a user would find in an item, person or social element they had not yet considered, based upon the properties of the item, the user's past experience and similar users. However, recommended items are often presented to the user with no context and no ability to influence the results. We present a novel visualization technique for recommender systems in which, a user can see the items recommended for him, and understand why they were recommended. Focusing on a user, we render a planar visualization listing a set of recommended items. The items are organized such that similar items reside nearby on the screen, centered around realtime generated categories. We use a combination of iconography, text and tag clouds, with maximal use of screen real estate, and keep items from overlapping to produce our results. We apply our visualization to expert relevance maps in the enterprise and a book recommendation system for consumers. The latter is based on Shelfari, a social network for reading and books.
Laser tissue soldering is a technique for the closure of incisions, which provides an immediate air- and watertight bond. Previous studies have shown that this method can bond tracheal incisions with the aid of stay sutures or solid albumin strips. In this study we investigated whether soldering using a diode laser and indocyanine green (ICG) dyed liquid albumin solution as solder, was efficacious for the repair of tracheal incisions without the need for additional strengthening aids. A transverse incision was made in isolated pig tracheas. The incision was smeared with liquid solder composed of 42% bovine albumin and 0.1 mg/ml ICG, and soldered using a temperature-controlled fiberoptic diode laser system. The soldered tracheal ends were sealed and the burst pressure measured. In a series of experiments the burst pressure was found to be higher than 382 mm Hg. These preliminary results demonstrate that diode laser tissue soldering of tracheal incisions provides better results than with a CO2 laser, and that it is possible to achieve considerable soldering strength without the use of any additional strengthening procedures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.