In this Letter, we propose a universal iterative compensation solution to the transport-of-intensity equation (US- TIE) with the advantages of high accuracy, convergence guarantee, applicability to arbitrarily-shaped regions, and simplified implementation and computation. With the “maximum intensity assumption”, we firstly simplified TIE as a standard Poisson equation to get an initial guess of the solution. Then the initial solution is further refined iteratively by solving the same Poisson equation, and thus, the instability associated with the division by zero/small intensity values and large intensity variations can be effectively bypassed. The convergence analysis and effectiveness of the iterative process has been given in detail. Furthermore, simulations with arbitrary phase, arbitrary aperture shapes, and nonuniform intensity distributions verify the effectiveness and universality of the proposed method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.