The high-energy modular array (HEMA) is one of three instruments that compose the Spectroscopic Time-Resolving Observatory for Broadband Energy X-rays (STROBE-X) mission concept. The HEMA is a large-area, high-throughput non-imaging pointed instrument based on the large area detector (LAD) developed as part of the Large Observatory For X-ray Timing (LOFT) mission concept. It is designed for spectral timing measurements of a broad range of sources and provides a transformative increase in sensitivity to X-rays in the energy range of 2 to 30 keV compared with previous instruments, with an effective area of 3.4 m2 at 8.5 keV and an energy resolution of better than 300 at 6 keV in its nominal field of regard.
The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument designed for the eXTP (enhanced Xray Timing and Polarimetry) mission, a major project of the Chinese Academy of Sciences and China National Space Administration. The eXTP science case involves the study of matter under extreme conditions of gravity, density and magnetism. The eXTP mission is currently performing a phase B study, expected to be completed by the end of 2024. The target launch date is end-2029. Until recently, the eXTP scientific payload included four instruments (Spectroscopy Focusing Array, Polarimetry Focusing Array, Large Area Detector and Wide Field Monitor) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The mission designed was however rescoped in early 2024 to meet the programmatic requirements of a final mission adoption in the context of the Chinese Academy of Sciences. Negotiations are still ongoing at agency level to assess the feasibility of a European participation to the payload implementation, by providing the LAD and WFM instruments, through a European Consortium composed of institutes from Italy, Spain, Austria, Czech Republic, Denmark, France, Germany, Netherlands, Poland, Switzerland and Turkey. At the time of writing, the LAD instrument is thus a scientific payload proposed for inclusion on eXTP. The LAD instrument for eXTP is based on the design originally proposed for the LOFT mission within the ESA-M3 context. The eXTP/LAD envisages a deployed >3 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we provide an overview of the LAD instrument design and the status of its maturity when approaching nearly the end of its phase B study.
The Enhanced X-ray Timing and Polarimetry (eXTP) mission is a flagship astronomy mission led by the Chinese Academy of Sciences (CAS) and scheduled for launch in 2029. The Large Area Detector (LAD) is one of the instruments on board eXTP and is dedicated to studying the timing of X-ray sources with unprecedented sensitivity. The development of the eXTP LAD involves a significant mass production of elements to be deployed in a significant number of countries (Italy, Austria, Germany, Poland, China, Czech Republic, France). This feature makes the Manufacturing, Assembly, Integration and Test (MAIT), Verification and Calibration the most challenging and critical tasks of the project. An optimized Flight Model (FM) implementation plan has been drawn up, aiming at a production rate of 2 Modules per week. This plan is based on the interleaving of a series of parallel elementary activities in order to make the most efficient use of time and resources and to ensure that the schedule is met.
The Large Area Detector (LAD) is the high-throughput, spectral-timing instrument onboard the eXTP mission, a flagship mission of the Chinese Academy of Sciences and the China National Space Administration, with a large European participation coordinated by Italy and Spain. The eXTP mission is currently performing its phase B study, with a target launch at the end-2027. The eXTP scientific payload includes four instruments (SFA, PFA, LAD and WFM) offering unprecedented simultaneous wide-band X-ray timing and polarimetry sensitivity. The LAD instrument is based on the design originally proposed for the LOFT mission. It envisages a deployed 3.2 m2 effective area in the 2-30 keV energy range, achieved through the technology of the large-area Silicon Drift Detectors - offering a spectral resolution of up to 200 eV FWHM at 6 keV - and of capillary plate collimators - limiting the field of view to about 1 degree. In this paper we will provide an overview of the LAD instrument design, its current status of development and anticipated performance.
P. Soffitta, R. Bellazzini, E. Bozzo, V. Burwitz, A. Castro-Tirado, E. Costa, T. Courvoisier, H. Feng, S. Gburek, R. Goosmann, V. Karas, G. Matt, F. Muleri, K. Nandra, M. Pearce, J. Poutanen, V. Reglero, D. Sabau Maria, A. Santangelo, G. Tagliaferri, C. Tenzer, J. Vink, M. Weisskopf, S. Zane, I. Agudo, A. Antonelli, P. Attina, L. Baldini, A. Bykov, R. Carpentiero, E. Cavazzuti, E. Churazov, E. Del Monte, D. De Martino, I. Donnarumma, V. Doroshenko, Y. Evangelista, I. Ferreira, E. Gallo, N. Grosso, P. Kaaret, E. Kuulkers, J. Laranaga, L. Latronico, D. Lumb, J. Macian, J. Malzac, F. Marin, E. Massaro, M. Minuti, C. Mundell, J. U. Ness, T. Oosterbroek, S. Paltani, G. Pareschi, R. Perna, P.-O. Petrucci, H. B. Pinazo, M. Pinchera, J. P. Rodriguez, M. Roncadelli, A. Santovincenzo, S. Sazonov, C. Sgro, D. Spiga, J. Svoboda, C. Theobald, T. Theodorou, R. Turolla, E. Wilhelmi de Ona, B. Winter, A. M. Akbar, H. Allan, R. Aloisio, D. Altamirano, L. Amati, E. Amato, E. Angelakis, J. Arezu, J.-L. Atteia, M. Axelsson, M. Bachetti, L. Ballo, S. Balman, R. Bandiera, X. Barcons, S. Basso, A. Baykal, W. Becker, E. Behar, B. Beheshtipour, R. Belmont, E. Berger, F. Bernardini, S. Bianchi, G. Bisnovatyi-Kogan, P. Blasi, P. Blay, A. Bodaghee, M. Boer, M. Boettcher, S. Bogdanov, I. Bombaci, R. Bonino, J. Braga, W. Brandt, A. Brez, N. Bucciantini, L. Burderi, I. Caiazzo, R. Campana, S. Campana, F. Capitanio, M. Cappi, M. Cardillo, P. Casella, O. Catmabacak, B. Cenko, P. Cerda-Duran, C. Cerruti, S. Chaty, M. Chauvin, Y. Chen, J. Chenevez, M. Chernyakova, C. C. Cheung, D. Christodoulou, P. Connell, R. Corbet, F. Coti Zelati, S. Covino, W. Cui, G. Cusumano, A. D’Ai, F. D’Ammando, M. Dadina, Z. Dai, A. De Rosa, L. de Ruvo, N. Degenaar, M. Del Santo, L. Del Zanna, G. Dewangan, S. Di Cosimo, N. Di Lalla, G. Di Persio, T. Di Salvo, T. Dias, C. Done, M. Dovciak, G. Doyle, L. Ducci, R. Elsner, T. Enoto, J. Escada, P. Esposito, C. Eyles, S. Fabiani, M. Falanga, S. Falocco, Y. Fan, R. Fender, M. Feroci, C. Ferrigno, W. Forman, L. Foschini, C. Fragile, F. Fuerst, Y. Fujita, J. L. Gasent-Blesa, J. Gelfand, B. Gendre, G. Ghirlanda, G. Ghisellini, M. Giroletti, D. Goetz, E. Gogus, J.-L. Gomez, D. Gonzalez, R. Gonzalez-Riestra, E. Gotthelf, L. Gou, P. Grandi, V. Grinberg, F. Grise, C. Guidorzi, N. Gurlebeck, T. Guver, D. Haggard, M. Hardcastle, D. Hartmann, C. Haswell, A. Heger, M. Hernanz, J. Heyl, L. Ho, J. Hoormann, J. Horak, J. Huovelin, D. Huppenkothen, R. Iaria, C. Inam Sitki, A. Ingram, G. Israel, L. Izzo, M. Burgess, M. Jackson, L. Ji, J. Jiang, T. Johannsen, C. Jones, S. Jorstad, J. J. E. Kajava, M. Kalamkar, E. Kalemci, T. Kallman, A. Kamble, F. Kislat, M. Kiss, D. Klochkov, E. Koerding, M. Kolehmainen, K. Koljonen, S. Komossa, A. Kong, S. Korpela, M. Kowalinski, H. Krawczynski, I. Kreykenbohm, M. Kuss, D. Lai, M. Lan, J. Larsson, S. Laycock, D. Lazzati, D. Leahy, H. Li, J. Li, L.-X. Li, T. Li, Z. Li, M. Linares, M. Lister, H. Liu, G. Lodato, A. Lohfink, F. Longo, G. Luna, A. Lutovinov, S. Mahmoodifar, J. Maia, V. Mainieri, C. Maitra, D. Maitra, A. Majczyna, S. Maldera, D. Malyshev, A. Manfreda, A. Manousakis, R. Manuel, R. Margutti, A. Marinucci, S. Markoff, A. Marscher, H. Marshall, F. Massaro, M. McLaughlin, G. Medina-Tanco, M. Mehdipour, M. Middleton, R. Mignani, P. Mimica, T. Mineo, B. Mingo, G. Miniutti, S. M. Mirac, G. Morlino, A. Motlagh, S. Motta, A. Mushtukov, S. Nagataki, F. Nardini, J. Nattila, G. Navarro, B. Negri, Matteo Negro, S. Nenonen, V. Neustroev, F. Nicastro, A. Norton, A. Nucita, P. O’Brien, S. O’Dell, H. Odaka, B. Olmi, N. Omodei, M. Orienti, M. Orlandini, J. Osborne, L. Pacciani, V. Paliya, I. Papadakis, A. Papitto, Z. Paragi, P. Pascal, B. Paul, L. Pavan, A. Pellizzoni, E. Perinati, M. Pesce-Rollins, E. Piconcelli, A. Pili, M. Pilia, M. Pohl, G. Ponti, D. Porquet, A. Possenti, K. Postnov, I. Prandoni, N. Produit, G. Puehlhofer, B. Ramsey, M. Razzano, N. Rea, P. Reig, K. Reinsch, T. Reiprich, M. Reynolds, G. Risaliti, T. Roberts, J. Rodriguez, M. Rossi, S. Rosswog, A. Rozanska, A. Rubini, B. Rudak, D. Russell, F. Ryde, S. Sabatini, G. Sala, M. Salvati, M. Sasaki, T. Savolainen, R. Saxton, S. Scaringi, K. Schawinski, N. Schulz, A. Schwope, P. Severgnini, M. Sharon, A Shaw, A. Shearer, X. Shesheng, I. -C. Shih, K. Silva, R. Silva, E. Silver, A. Smale, F. Spada, G. Spandre, A. Stamerra, B. Stappers, S. Starrfield, L. Stawarz, N. Stergioulas, A. Stevens, H. Stiele, V. Suleimanov, R. Sunyaev, A. Slowikowska, F. Tamborra, F. Tavecchio, R. Taverna, A. Tiengo, L. Tolos, F. Tombesi, J. Tomsick, H. Tong, G. Torok, D. Torres, A. Tortosa, A. Tramacere, V. Trimble, G. Trinchieri, S. Tsygankov, M. Tuerler, S. Turriziani, F. Ursini, P. Uttley, P. Varniere, F. Vincent, E. Vurgun, C. Wang, Z. Wang, A. Watts, J. Wheeler, K. Wiersema, R. Wijnands, J. Wilms, A. Wolter, K. Wood, K. Wu, X. Wu, W. Xiangyu, F. Xie, R. Xu, S.-P. Yan, J. Yang, W. Yu, F. Yuan, A. Zajczyk, D. Zanetti, R. Zanin, C. Zanni, L. Zappacosta, A. Zdziarski, A. Zech, H. Zhang, S. Zhang, W. Zhang, A. Zoghbi
XIPE, the X-ray Imaging Polarimetry Explorer, is a mission dedicated to X-ray Astronomy. At the time of
writing XIPE is in a competitive phase A as fourth medium size mission of ESA (M4). It promises to reopen the
polarimetry window in high energy Astrophysics after more than 4 decades thanks to a detector that efficiently
exploits the photoelectric effect and to X-ray optics with large effective area. XIPE uniqueness is time-spectrally-spatially-
resolved X-ray polarimetry as a breakthrough in high energy astrophysics and fundamental physics.
Indeed the payload consists of three Gas Pixel Detectors at the focus of three X-ray optics with a total effective
area larger than one XMM mirror but with a low weight. The payload is compatible with the fairing of the Vega
launcher. XIPE is designed as an observatory for X-ray astronomers with 75 % of the time dedicated to a Guest
Observer competitive program and it is organized as a consortium across Europe with main contributions from
Italy, Germany, Spain, United Kingdom, Poland, Sweden.
COMpton Polarimeter with Avalanche Silicon readout (COMPASS) is a research and development project that aims to measure the polarization of X-ray photons through Compton Scattering. The measurement is obtained by using a set of small rods of fast scintillation materials with both low-Z (as active scatterer) and high-Z (as absorber), all read-out with Silicon Photomultipliers. By this method we can operate scattering and absorbing elements in coincidence, in order to reduce the background.
In the laboratory we are characterising the SiPMs using different types of scintillators and we are optimising the performances in terms of energy resolution, energy threshold and photon tagging efficiency.
We aim to study the design of two types of satellite-borne instruments: a focal plane polarimeter to be coupled with multilayer optics for hard X-rays and a large area and wide field of view polarimeter for transients and Gamma Ray Bursts.
In this paper we describe the status of the COMPASS project, we report about the laboratory measurements and we describe our future perspectives.
M. Feroci, E. Bozzo, S. Brandt, M. Hernanz, M. van der Klis, L.-P. Liu, P. Orleanski, M. Pohl, A. Santangelo, S. Schanne, L. Stella, T. Takahashi, H. Tamura, A. Watts, J. Wilms, S. Zane, S.-N. Zhang, S. Bhattacharyya, I. Agudo, M. Ahangarianabhari, C. Albertus, M. Alford, A. Alpar, D. Altamirano, L. Alvarez, L. Amati, C. Amoros, N. Andersson, A. Antonelli, A. Argan, R. Artigue, B. Artigues, J.-L. Atteia, P. Azzarello, P. Bakala, D. Ballantyne, G. Baldazzi, M. Baldo, S. Balman, M. Barbera, C. van Baren, D. Barret, A. Baykal, M. Begelman, E. Behar, O. Behar, T. Belloni, F. Bernardini, G. Bertuccio, S. Bianchi, A. Bianchini, P. Binko, P. Blay, F. Bocchino, M. Bode, P. Bodin, I. Bombaci, J.-M. Bonnet Bidaud, S. Boutloukos, F. Bouyjou, L. Bradley, J. Braga, M. Briggs, E. Brown, M. Buballa, N. Bucciantini, L. Burderi, M. Burgay, M. Bursa, C. Budtz-Jørgensen, E. Cackett, F. Cadoux, P. Cais, G. Caliandro, R. Campana, S. Campana, X. Cao, F. Capitanio, J. Casares, P. Casella, A. Castro-Tirado, E. Cavazzuti, Y. Cavechi, S. Celestin, P. Cerda-Duran, D. Chakrabarty, N. Chamel, F. Château, C. Chen, Y. Chen, J. Chenevez, M. Chernyakova, J. Coker, R. Cole, A. Collura, M. Coriat, R. Cornelisse, L. Costamante, A. Cros, W. Cui, A. Cumming, G. Cusumano, B. Czerny, A. D'Aì, F. D'Ammando, V. D'Elia, Z. Dai, E. Del Monte, A. De Luca, D. De Martino, J. P. C. Dercksen, M. De Pasquale, A. De Rosa, M. Del Santo, S. Di Cosimo, N. Degenaar, J. W. den Herder, S. Diebold, T. Di Salvo, Y. Dong, I. Donnarumma, V. Doroshenko, G. Doyle, S. Drake, M. Durant, D. Emmanoulopoulos, T. Enoto, M. H. Erkut, P. Esposito, Y. Evangelista, A. Fabian, M. Falanga, Y. Favre, C. Feldman, R. Fender, H. Feng, V. Ferrari, C. Ferrigno, M. Finger, G. Fraser, M. Frericks, M. Fullekrug, F. Fuschino, M. Gabler, D. K. Galloway, J. L. Gálvez Sanchez, P. Gandhi, Z. Gao, E. Garcia-Berro, B. Gendre, O. Gevin, S. Gezari, A. B. Giles, M. Gilfanov, P. Giommi, G. Giovannini, M. Giroletti, E. Gogus, A. Goldwurm, K. Goluchová, D. Götz, L. Gou, C. Gouiffes, P. Grandi, M. Grassi, J. Greiner, V. Grinberg, P. Groot, M. Gschwender, L. Gualtieri, M. Guedel, C. Guidorzi, L. Guy, D. Haas, P. Haensel, M. Hailey, K. Hamuguchi, F. Hansen, D. Hartmann, C. A. Haswell, K. Hebeler, A. Heger, M. Hempel, W. Hermsen, J. Homan, A. Hornstrup, R. Hudec, J. Huovelin, D. Huppenkothen, S. Inam, A. Ingram, J. In't Zand, G. Israel, K. Iwasawa, L. Izzo, H. Jacobs, F. Jetter, T. Johannsen, P. Jenke, P. Jonker, J. Josè, P. Kaaret, K. Kalamkar, E. Kalemci, G. Kanbach, V. Karas, D. Karelin, D. Kataria, L. Keek, T. Kennedy, D. Klochkov, W. Kluzniak, E. Koerding, K. Kokkotas, S. Komossa, S. Korpela, C. Kouveliotou, A. Kowalski, I. Kreykenbohm, L. Kuiper, D. Kunneriath, A. Kurkela, I. Kuvvetli, F. La Franca, C. Labanti, D. Lai, F. Lamb, C. Lachaud, P. Laubert, F. Lebrun, X. Li, E. Liang, O. Limousin, D. Lin, M. Linares, D. Linder, G. Lodato, F. Longo, F. Lu, N. Lund, T. Maccarone, D. Macera, S. Maestre, S. Mahmoodifar, D. Maier, P. Malcovati, J. Malzac, C. Malone, I. Mandel, V. Mangano, A. Manousakis, M. Marelli, J. Margueron, M. Marisaldi, S. Markoff, A. Markowitz, A. Marinucci, A. Martindale, G. Martínez, I. McHardy, G. Medina-Tanco, M. Mehdipour, A. Melatos, M. Mendez, S. Mereghetti, S. Migliari, R. Mignani, M. Michalska, T. Mihara, M. C. Miller, J. M. Miller, T. Mineo, G. Miniutti, S. Morsink, C. Motch, S. Motta, M. Mouchet, G. Mouret, J. Mulačová, F. Muleri, T. Muñoz-Darias, I. Negueruela, J. Neilsen, T. Neubert, A. Norton, M. Nowak, A. Nucita, P. O'Brien, M. Oertel, P. E. H. Olsen, M. Orienti, M. Orio, M. Orlandini, J. Osborne, R. Osten, F. Ozel, L. Pacciani, F. Paerels, S. Paltani, M. Paolillo, I. Papadakis, A. Papitto, Z. Paragi, J. Paredes, A. Patruno, B. Paul, F. Pederiva, E. Perinati, A. Pellizzoni, A. V. Penacchioni, U. Peretz, M. Perez, M. Perez-Torres, B. Peterson, V. Petracek, C. Pittori, J. Pons, J. Portell, A. Possenti, K. Postnov, J. Poutanen, M. Prakash, I. Prandoni, H. Le Provost, D. Psaltis, J. Pye, J. Qu, D. Rambaud, P. Ramon, G. Ramsay, M. Rapisarda, A. Rashevski, I. Rashevskaya, P. Ray, N. Rea, S. Reddy, P. Reig, M. Reina Aranda, R. Remillard, C. Reynolds, L. Rezzolla, M. Ribo, R. de la Rie, A. Riggio, A. Rios, D. Rischke, P. Rodríguez-Gil, J. Rodriguez, R. Rohlfs, P. Romano, E. M. Rossi, A. Rozanska, A. Rousseau, B. Rudak, D. Russell, F. Ryde, L. Sabau-Graziati, T. Sakamoto, G. Sala, R. Salvaterra, D. Salvetti, A. Sanna, J. Sandberg, T. Savolainen, S. Scaringi, J. Schaffner-Bielich, H. Schatz, J. Schee, C. Schmid, M. Serino, N. Shakura, S. Shore, J. Schnittman, R. Schneider, A. Schwenk, A. Schwope, A. Sedrakian, J.-Y. Seyler, A. Shearer, A. Slowikowska, M. Sims, A. Smith, D. Smith, P. Smith, M. Sobolewska, V. Sochora, P. Soffitta, P. Soleri, L. Song, A. Spencer, A. Stamerra, B. Stappers, R. Staubert, A. Steiner, N. Stergioulas, A. Stevens, G. Stratta, T. Strohmayer, Z. Stuchlik, S. Suchy, V. Suleimanov, F. Tamburini, T. Tauris, F. Tavecchio, C. Tenzer, F. Thielemann, A. Tiengo, L. Tolos, F. Tombesi, J. Tomsick, G. Torok, J. M. Torrejon, D. F. Torres, E. Torresi, A. Tramacere, I. Traulsen, A. Trois, R. Turolla, S. Turriziani, S. Typel, P. Uter, P. Uttley, A. Vacchi, P. Varniere, S. Vaughan, S. Vercellone, M. Vietri, F. Vincent, V. Vrba, D. Walton, J. Wang, Z. Wang, S. Watanabe, R. Wawrzaszek, N. Webb, N. Weinberg, H. Wende, P. Wheatley, R. Wijers, R. Wijnands, M. Wille, C. Wilson-Hodge, B. Winter, S. Walk, K. Wood, S. Woosley, X. Wu, R. Xu, W. Yu, F. Yuan, W. Yuan, Y. Yuan, G. Zampa, N. Zampa, L. Zampieri, L. Zdunik, A. Zdziarski, A. Zech, B. Zhang, C. Zhang, S. Zhang, M. Zingale, F. Zwart
The Large Observatory For x-ray Timing (LOFT) is a mission concept which was proposed to ESA as M3 and M4 candidate in the framework of the Cosmic Vision 2015-2025 program. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument and the uniquely large field of view of its wide field monitor, LOFT will be able to study the behaviour of matter in extreme conditions such as the strong gravitational field in the innermost regions close to black holes and neutron stars and the supra-nuclear densities in the interiors of neutron stars. The science payload is based on a Large Area Detector (LAD, >8m2 effective area, 2-30 keV, 240 eV spectral resolution, 1 degree collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g., GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the current technical and programmatic status of the mission.
M. Feroci, J. W. den Herder, E. Bozzo, D. Barret, S. Brandt, M. Hernanz, M. van der Klis, M. Pohl, A. Santangelo, L. Stella, A. Watts, J. Wilms, S. Zane, M. Ahangarianabhari, C. Albertus, M. Alford, A. Alpar, D. Altamirano, L. Alvarez, L. Amati, C. Amoros, N. Andersson, A. Antonelli, A. Argan, R. Artigue, B. Artigues, J.-L. Atteia, P. Azzarello, P. Bakala, G. Baldazzi, S. Balman, M. Barbera, C. van Baren, S. Bhattacharyya, A. Baykal, T. Belloni, F. Bernardini, G. Bertuccio, S. Bianchi, A. Bianchini, P. Binko, P. Blay, F. Bocchino, P. Bodin, I. Bombaci, J.-M. Bonnet Bidaud, S. Boutloukos, L. Bradley, J. Braga, E. Brown, N. Bucciantini, L. Burderi, M. Burgay, M. Bursa, C. Budtz-Jørgensen, E. Cackett, F. Cadoux, P. Caïs, G. Caliandro, R. Campana, S. Campana, F. Capitanio, J. Casares, P. Casella, A. Castro-Tirado, E. Cavazzuti, P. Cerda-Duran, D. Chakrabarty, F. Château, J. Chenevez, J. Coker, R. Cole, A. Collura, R. Cornelisse, T. Courvoisier, A. Cros, A. Cumming, G. Cusumano, A. D'Ai, V. D'Elia, E. Del Monte, A. de Luca, D. de Martino, J. P. C. Dercksen, M. de Pasquale, A. De Rosa, M. Del Santo, S. Di Cosimo, S. Diebold, T. Di Salvo, I. Donnarumma, A. Drago, M. Durant, D. Emmanoulopoulos, M. H. Erkut, P. Esposito, Y. Evangelista, A. Fabian, M. Falanga, Y. Favre, C. Feldman, V. Ferrari, C. Ferrigno, M. Finger, G. Fraser, M. Frericks, F. Fuschino, M. Gabler, D. K. Galloway, J. L. Galvez Sanchez, E. Garcia-Berro, B. Gendre, S. Gezari, A. B. Giles, M. Gilfanov, P. Giommi, G. Giovannini, M. Giroletti, E. Gogus, A. Goldwurm, K. Goluchová, D. Götz, C. Gouiffes, M. Grassi, P. Groot, M. Gschwender, L. Gualtieri, C. Guidorzi, L. Guy, D. Haas, P. Haensel, M. Hailey, F. Hansen, D. Hartmann, C. A. Haswell, K. Hebeler, A. Heger, W. Hermsen, J. Homan, A. Hornstrup, R. Hudec, J. Huovelin, A. Ingram, J. In't Zand, G. Israel, K. Iwasawa, L. Izzo, H. Jacobs, F. Jetter, T. Johannsen, P. Jonker, J. Josè, P. Kaaret, G. Kanbach, V. Karas, D. Karelin, D. Kataria, L. Keek, T. Kennedy, D. Klochkov, W. Kluzniak, K. Kokkotas, S. Korpela, C. Kouveliotou, I. Kreykenbohm, L. Kuiper, I. Kuvvetli, C. Labanti, D. Lai, F. Lamb, P. Laubert, F. Lebrun, D. Lin, D. Linder, G. Lodato, F. Longo, N. Lund, T. J. Maccarone, D. Macera, S. Maestre, S. Mahmoodifar, D. Maier, P. Malcovati, I. Mandel, V. Mangano, A. Manousakis, M. Marisaldi, A. Markowitz, A. Martindale, G. Matt, I. McHardy, A. Melatos, M. Mendez, S. Mereghetti, M. Michalska, S. Migliari, R. Mignani, M. C. Miller, J. M. Miller, T. Mineo, G. Miniutti, S. Morsink, C. Motch, S. Motta, M. Mouchet, G. Mouret, J. Mulačová, F. Muleri, T. Muñoz-Darias, I. Negueruela, J. Neilsen, A. Norton, M. Nowak, P. O'Brien, P. E. H. Olsen, M. Orienti, M. Orio, M. Orlandini, P. Orleański, J. Osborne, R. Osten, F. Ozel, L. Pacciani, M. Paolillo, A. Papitto, J. Paredes, A. Patruno, B. Paul, E. Perinati, A. Pellizzoni, A. V. Penacchioni, M. A. Perez, V. Petracek, C. Pittori, J. Pons, J. Portell, A. Possenti, J. Poutanen, M. Prakash, P. Le Provost, D. Psaltis, D. Rambaud, P. Ramon, G. Ramsay, M. Rapisarda, A. Rachevski, I. Rashevskaya, P. Ray, N. Rea, S. Reddy, P. Reig, M. Reina Aranda, R. Remillard, C. Reynolds, L. Rezzolla, M. Ribo, R. de la Rie, A. Riggio, A. Rios, P. Rodríguez-Gil, J. Rodriguez, R. Rohlfs, P. Romano, E. M. R. Rossi, A. Rozanska, A. Rousseau, F. Ryde, L. Sabau-Graziati, G. Sala, R. Salvaterra, A. Sanna, J. Sandberg, S. Scaringi, S. Schanne, J. Schee, C. Schmid, S. Shore, R. Schneider, A. Schwenk, A. Schwope, J.-Y. Seyler, A. Shearer, A. Smith, D. Smith, P. Smith, V. Sochora, P. Soffitta, P. Soleri, A. Spencer, B. Stappers, A. Steiner, N. Stergioulas, G. Stratta, T. Strohmayer, Z. Stuchlik, S. Suchy, V. Sulemainov, T. Takahashi, F. Tamburini, T. Tauris, C. Tenzer, L. Tolos, F. Tombesi, J. Tomsick, G. Torok, J. M. Torrejon, D. F. Torres, A. Tramacere, A. Trois, R. Turolla, S. Turriziani, P. Uter, P. Uttley, A. Vacchi, P. Varniere, S. Vaughan, S. Vercellone, V. Vrba, D. Walton, S. Watanabe, R. Wawrzaszek, N. Webb, N. Weinberg, H. Wende, P. Wheatley, R. Wijers, R. Wijnands, M. Wille, C. Wilson-Hodge, B. Winter, K. Wood, G. Zampa, N. Zampa, L. Zampieri, L. Zdunik, A. Zdziarski, B. Zhang, F. Zwart, M. Ayre, T. Boenke, C. Corral van Damme, Erik Kuulkers, D. Lumb
The Large Observatory For x-ray Timing (LOFT) was studied within ESA M3 Cosmic Vision framework and participated in the final downselection for a launch slot in 2022-2024. Thanks to the unprecedented combination of effective area and spectral resolution of its main instrument, LOFT will study the behaviour of matter under extreme conditions, such as the strong gravitational field in the innermost regions of accretion flows close to black holes and neutron stars, and the supranuclear densities in the interior of neutron stars. The science payload is based on a Large Area Detector (LAD, 10 m2 effective area, 2-30 keV, 240 eV spectral resolution, 1° collimated field of view) and a Wide Field Monitor (WFM, 2-50 keV, 4 steradian field of view, 1 arcmin source location accuracy, 300 eV spectral resolution). The WFM is equipped with an on-board system for bright events (e.g. GRB) localization. The trigger time and position of these events are broadcast to the ground within 30 s from discovery. In this paper we present the status of the mission at the end of its Phase A study.
The Large Observatory For X-ray Timing (LOFT) is one of the 5 missions considered by ESA as an M3 candidate. The LOFT scientific payload consists of a collimated Large Area Detector (LAD) and a Wide Field Monitor (WFM).
The scale of the LAD (10 m² effective area) puts it in a new design space for X-ray astronomy, with resulting implications for design trade-offs, modularity, manufacturing, assembly, test and calibration processes. This paper focuses on the LAD module, which is the building block of the instrument. We present the overall module design, discussing these challenges and how they have been addressed.
LOFT (Large Observatory for X-ray Timing) is one of the five candidates that were considered by ESA as an M3 mission (with launch in 2022-2024) and has been studied during an extensive assessment phase. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black holes and neutron stars. Its pointed instrument is the Large Area Detector (LAD), a 10 m2-class instrument operating in the 2-30keV range, which holds the capability to revolutionise studies of variability from X-ray sources on the millisecond time scales.
The LAD instrument has now completed the assessment phase but was not down-selected for launch. However, during the assessment, most of the trade-offs have been closed leading to a robust and well documented design that will be reproposed in future ESA calls. In this talk, we will summarize the characteristics of the LAD design and give an overview of the expectations for the instrument capabilities.
P. Cattaneo, A. Rappoldi, A. Argan, B. Buonomo, A. Bulgarelli, A. Chen, F. D'Ammando, L. Foggetta, F. Fuschino, M. Galli, F. Gianotti, A. Giuliani, F. Longo, M. Marisaldi, G. Mazzitelli, A. Pellizzoni, M. Prest, G. Pucella, L. Quintieri, M. Tavani, M. Trifoglio, A. Trois, P. Valente, E. Vallazza, S. Vercellone, G. Barbiellini, P. Caraveo, E. Costa, G. De Paris, E. Del Monte, G. Di Cocco, I. Donnarumma, Y. Evangelista, A. Ferrari, M. Feroci, M. Fiorini, M. Giusti, C. Labanti, I. Lapshov, F. Lazzarotto, P. Lipari, F. Lucarelli, S. Mereghetti, E. Morelli, E. Moretti, A. Morselli, L. Pacciani, F. Perotti, G. Piano, P. Picozza, M. Pilia, M. Rapisarda, A. Rubini, S. Sabatini, P. Soffitta, E. Striani, V. Vittorini, D. Zanello, S. Colafrancesco, P. Giommi, C. Pittori, P. Santolamazza, F. Verrecchia, L. Salotti
KEYWORDS: Monte Carlo methods, Calibration, Sensors, Target detection, Spectroscopy, Silicon, Optical simulations, Magnetic sensors, Photonics systems, Point spread functions
At the core of the AGILE scientific instrument, designed to operate on a satellite, there is the Gamma Ray
Imaging Detector (GRID) consisting of a Silicon Tracker (ST), a Cesium Iodide Mini-Calorimeter and an
Anti-Coincidence system of plastic scintillator bars. The ST needs an on-ground calibration with a γ-ray beam to
validate the simulation used to calculate the energy response function and the effective area versus the energy and
the direction of the γ rays. A tagged γ-ray beam line was designed at the Beam Test Facility (BTF) of the INFN
Laboratori Nazionali of Frascati (LNF), based on an electron beam generating γ rays through bremsstrahlung in
a position-sensitive target. The γ-ray energy is deduced by the difference with the post-bremsstrahlung electron
energy1-.2 The electron energy is measured by a spectrometer consisting of a dipole magnet and an array of
position sensitive silicon strip detectors, the Photon Tagging System (PTS). The use of the combined BTF-PTS
system as tagged photon beam requires understanding the efficiency of γ-ray tagging, the probability of fake
tagging, the energy resolution and the relation of the PTS hit position versus the γ-ray energy. This paper
describes this study comparing data taken during the AGILE calibration occurred in 2005 with simulation.
M. Feroci, J. den Herder, E. Bozzo, D. Barret, S. Brandt, M. Hernanz, M. van der Klis, M. Pohl, A. Santangelo, L. Stella, A. Watts, J. Wilms, S. Zane, M. Ahangarianabhari, A. Alpar, D. Altamirano, L. Alvarez, L. Amati, C. Amoros, N. Andersson, A. Antonelli, A. Argan, R. Artigue, P. Azzarello, G. Baldazzi, S. Balman, M. Barbera, T. Belloni, G. Bertuccio, S. Bianchi, A. Bianchini, P. Bodin, J.-M. Bonnet Bidaud, S. Boutloukos, J. Braga, E. Brown, N. Bucciantini, L. Burderi, M. Bursa, C. Budtz-Jørgensen, E. Cackett, F. Cadoux, P. Cais, G. Caliandro, R. Campana, S. Campana, P. Casella, D. Chakrabarty, J. Chenevez, J. Coker, R. Cole, A. Collura, T. Courvoisier, A. Cros, A. Cumming, G. Cusumano, A. D'Ai, V. D'Elia, E. Del Monte, D. de Martino, A. De Rosa, S. Di Cosimo, S. Diebold, T. Di Salvo, I. Donnarumma, A. Drago, M. Durant, D. Emmanoulopoulos, Y. Evangelista, A. Fabian, M. Falanga, Y. Favre, C. Feldman, C. Ferrigno, M. Finger, G. Fraser, F. Fuschino, D. Galloway, J. Galvez Sanchez, E. Garcia-Berro, B. Gendre, S. Gezari, A. Giles, M. Gilfanov, P. Giommi, G. Giovannini, M. Giroletti, A. Goldwurm, D. Götz, C. Gouiffes, M. Grassi, P. Groot, C. Guidorzi, D. Haas, F. Hansen, D. Hartmann, C. A. Haswell, A. Heger, J. Homan, A. Hornstrup, R. Hudec, J. Huovelin, A. Ingram, J. J. In't Zand, J. Isern, G. Israel, L. Izzo, P. Jonker, P. Kaaret, V. Karas, D. Karelin, D. Kataria, L. Keek, T. Kennedy, D. Klochkov, W. Kluzniak, K. Kokkotas, S. Korpela, C. Kouveliotou, I. Kreykenbohm, L. Kuiper, I. Kuvvetli, C. Labanti, D. Lai, F. Lamb, F. Lebrun, D. Lin, D. Linder, G. Lodato, F. Longo, N. Lund, T. Maccarone, D. Macera, D. Maier, P. Malcovati, V. Mangano, A. Manousakis, M. Marisaldi, A. Markowitz, A. Martindale, G. Matt, I. McHardy, A. Melatos, M. Mendez, S. Migliari, R. Mignani, M. Miller, J. Miller, T. Mineo, G. Miniutti, S. Morsink, C. Motch, S. Motta, M. Mouchet, F. Muleri, A. Norton, M. Nowak, P. O'Brien, M. Orienti, M. Orio, M. Orlandini, P. Orleanski, J. Osborne, R. Osten, F. Ozel, L. Pacciani, A. Papitto, B. Paul, E. Perinati, V. Petracek, J. Portell, J. Poutanen, D. Psaltis, D. Rambaud, G. Ramsay, M. Rapisarda, A. Rachevski, P. Ray, N. Rea, S. Reddy, P. Reig, M. Reina Aranda, R. Remillard, C. Reynolds, P. Rodríguez-Gil, J. Rodriguez, P. Romano, E. M. Rossi, F. Ryde, L. Sabau-Graziati, G. Sala, R. Salvaterra, A. Sanna, S. Schanne, J. Schee, C. Schmid, A. Schwenk, A. Schwope, J.-Y. Seyler, A. Shearer, A. Smith, D. Smith, P. Smith, V. Sochora, P. Soffitta, P. Soleri, B. Stappers, B. Steltzer, N. Stergioulas, G. Stratta, T. Strohmayer, Z. Stuchlik, S. Suchy, V. Sulemainov, T. Takahashi, F. Tamburini, C. Tenzer, L. Tolos, G. Torok, J. Torrejon, D. Torres, A. Tramacere, A. Trois, S. Turriziani, P. Uter, P. Uttley, A. Vacchi, P. Varniere, S. Vaughan, S. Vercellone, V. Vrba, D. Walton, S. Watanabe, R. Wawrzaszek, N. Webb, N. Weinberg, H. Wende, P. Wheatley, R. Wijers, R. Wijnands, M. Wille, C. Wilson-Hodge, B. Winter, K. Wood, G. Zampa, N. Zampa, L. Zampieri, A. Zdziarski, B. Zhang
The LOFT mission concept is one of four candidates selected by ESA for the M3 launch opportunity as Medium Size missions of the Cosmic Vision programme. The launch window is currently planned for between 2022 and 2024. LOFT is designed to exploit the diagnostics of rapid X-ray flux and spectral variability that directly probe the motion of matter down to distances very close to black holes and neutron stars, as well as the physical state of ultradense matter. These primary science goals will be addressed by a payload composed of a Large Area Detector (LAD) and a Wide Field Monitor (WFM). The LAD is a collimated (<1 degree field of view) experiment operating in the energy range 2-50 keV, with a 10 m2 peak effective area and an energy resolution of 260 eV at 6 keV. The WFM will operate in the same energy range as the LAD, enabling simultaneous monitoring of a few-steradian wide field of view, with an angular resolution of <5 arcmin. The LAD and WFM experiments will allow us to investigate variability from submillisecond QPO’s to yearlong transient outbursts. In this paper we report the current status of the project.
The Large Observatory For X-ray Timing (LOFT), selectyed by ESA as one of the four Cosmic Visiion M3 candidate missions to undergo an assessment phase, will revolutionize the study of compact objects in our galaxy and of the brightest supermassive black holes in active galactic nuclei. The Large Area Detector (LAD), carrying an unprecedented effective area of 10 m2, is complemented by a coded-mask Wide Field Monitor, in charge of monitoring a large fraction of the sky potentially accesesible to the LAD, to provide the history and context for the sources observed by LAD and to trigger its observations on their most interesting and extreme states. In this paper we present detailed simulations of the imaging capabilities of the Silicon Drift Detectors developed for the LOFT Wide Field Monitor detection plane. The simulations explore a large parameter space for both the detector design and the environmental conditions, allowing us to optimize the detector characteristcs and demonstrating the X-ray imaging performance of the large-area SDDs in the 2-50 keV energy band.
The Scientific objectives of the LOFT mission, e.g., the study of the Neutron Star equation of state and of the
Strong Gravity, require accurate energy, time and flux calibration for the 516k channels of the SDD detectors, as
well as the knowledge of the detector dead time and of the detector response with respect to the incident angle
of the photons. We report here the evaluations made to assess the calibration issues for the LAD instrument.
The strategies for both ground and on-board calibrations, including astrophysical observations, show that the
goals are achievable within the current technologies.
KEYWORDS: Monte Carlo methods, Point spread functions, Dispersion, Calibration, Matrices, Space telescopes, Telescopes, Sensors, Photon transport, Particles
AGILE is a γ/X-ray telescope which has been in orbit since 23 April 2007. The
γ-ray detector, AGILE-GRID,
has observed Galactic and extragalactic sources, many of which were collected in the first AGILE Catalog.
We present the calibration of the AGILE-GRID using in-flight data and updated Monte Carlo simulations,
producing response matrices for the effective area, energy dispersion, and point spread dispersion as a function
of pointing direction in instrument coordinates and energy.
We performed Monte Carlo simulations in GEANT3 at different
γ-ray photon energies and incident angles,
using Kalman filter-based photon reconstruction and on-board and on-ground filters. Long integrations of in-flight observations of the Vela, Crab and Geminga sources in broad and narrow energy bands were used to validate
The Large Observatory for X-ray Timing (LOFT) is one of the four candidate ESA M3 missions considered for launch in
the 2022 timeframe. It is specifically designed to perform fast X-ray timing and probe the status of the matter near black
holes and neutron stars. The LOFT scientific payload is composed of a Large Area Detector (LAD) and a Wide Field
Monitor (WFM). The LAD is a 10 m2-class pointed instrument with 20 times the collecting area of the best past timing
missions (such as RXTE) over the 2-30 keV range, which holds the capability to revolutionize studies of X-ray
variability down to the millisecond time scales. Its ground-breaking characteristic is a low mass per unit surface,
enabling an effective area of ~10 m2 (@10 keV) at a reasonable weight. The development of such large but light
experiment, with low mass and power per unit area, is now made possible by the recent advancements in the field of
large-area silicon detectors - able to time tag an X-ray photon with an accuracy <10 μs and an energy resolution of ~260
eV at 6 keV - and capillary-plate X-ray collimators. In this paper, we will summarize the characteristics of the LAD
instrument and give an overview of its capabilities.
The use of large-area, fine-pitch Silicon detectors has demonstrated the feasibility of wide field imaging experiments
requesting very low resources in terms of weight, volume, power and costs. The flying SuperAGILE instrument
is the first such experiment, adopting large-area Silicon microstrip detectors coupled to one-dimensional
coded masks. With less than 10 kg, 12 watt and 0.04 m3 it provides 6-arcmin angular resolution over >1 sr field
of view. Due to odd operational conditions, SuperAGILE works in the unfavourable energy range 18-60 keV. In
this paper we show that the use of innovative large-area Silicon Drift Detectors allows to design experiments with
arcmin-imaging performance over steradian-wide fields of view, in the energy range 2-50 keV, with spectroscopic
resolution in the range of 300-570 eV (FWHM) at room temperature. We will show the concept, design and
readiness of such an experiment, supported by laboratory tests on large-area prototypes. We will quantify the
expected performance in potential applications on X-ray astronomy missions for the observation and long-term
monitoring of Galactic and extragalactic transient and persistent sources, as well as localization and fine study
of the prompt emission of Gamma-Ray Bursts in soft X-rays.
In the context of the design of wide-field of view experiments for X-ray astronomy, we studied the response to X-rays in
the range between 2 and 60 keV of a large area Silicon Drift Chamber originally designed for particle tracking in high
energy physics. We demonstrated excellent imaging and spectroscopy performance of monolithic 53 cm2 detectors, with
position resolution as good as 30 μm and energy resolution in the range 300-570 eV FWHM obtainable at room
temperature (20 °C). In this paper we show the results of test campaigns at the X-ray facility at INAF/IASF Rome, aimed
at characterizing the detector performance by scanning the detector area with highly collimated spots of monochromatic
X-rays. In these tests we used a detector prototype equipped with discrete read-out front-end electronics.
The X-ray sky in high time resolution holds the key to a number of observables related to fundamental physics,
inaccessible to other types of investigations, such as imaging, spectroscopy and polarimetry. Strong gravity effects, the
measurement of the mass of black holes and neutron stars, the equation of state of ultradense matter are among the
objectives of such observations. The prospects for future, non-focused X-ray timing experiments after the exciting age of
RXTE/PCA are very uncertain, mostly due to the technological limitations that need to be faced to realize experiments
with effective areas in the range of several square meters, meeting the scientific requirements. We are developing large-area
monolithic Silicon drift detectors offering high time and energy resolution at room temperature, with modest
resources and operation complexity (e.g., read-out) per unit area. Based on the properties of the detector and read-out
electronics we measured in laboratory, we built a concept for a realistic unprecedented large mission devoted to X-ray
timing in the energy range 2-30 keV. We show that effective areas in the range of 10-15 square meters are within reach,
by using a conventional spacecraft platform and launcher.
The SuperAGILE experiment is the hard X-ray monitor of the AGILE mission. It is a 2 x one-dimensional imager, with
6-arcmin angular resolution in the energy range 18 - 60 keV and a field of view in excess of 1 steradian. SuperAGILE is
successfully operating in orbit since Summer 2007, providing long-term monitoring of bright sources and prompt
detection and localization of gamma-ray bursts. Starting on October 2009 the AGILE mission lost its reaction wheel and
the satellite attitude is no longer stabilized. The current mode of operation of the AGILE satellite is a Spinning Mode,
around the Sun-pointing direction, with an angular velocity of about 0.8 degree/s (corresponding to 8 times the
SuperAGILE point spread function every second). In these new conditions, SuperAGILE continuously scans a much
larger fraction of the sky, with much smaller exposure to each region. In this paper we review some of the results of the
first 2.5 years of "standard" operation of SuperAGILE, and show how new implementations in the data analysis software
allows to continue the hard X-ray sky monitoring by SuperAGILE also in the new attitude conditions.
The SuperAGILE experiment was launched on April 2007 onboard the Italian gamma-ray mission AGILE. With a field
of view of approximately one steradian and an angular resolution of 6 arcmin, SuperAGILE is imaging the X-ray sky in
two one-dimensional projections in the 18-60 keV energy range. After a ~2-month Commissioning Phase, SuperAGILE
was set in its nominal configuration at the beginning of Science Verification Phase in July 2007 and it is observing the
X-ray sky since then. In this paper we describe the in-orbit operations, the commissioning, science verification and inflight
calibration phases, and provide a brief summary of the scientific observations carried out until June 2008.
SuperAGILE (SA) is the hard X-ray monitor of the AGILE small satellite mission, launched on 23rd April 2007.
The monitor is based on four one-dimensional coded-mask detectors. In spite of the compactness (45×45×15 cm3)
and lightness (5 kg), the experiment has high angular resolution (6 arcmin) and point source location accuracy (<2
arcmin, for bright sources) for every position in the Field Of View (FOV). To achieve these imaging performances,
considerable efforts were made for the alignment procedures during the assembly of the experiment itself, and
with the rest of the satellite. Mechanical alignment were measured during all the assembly phases and before the
launch campaign. Moreover, a specific campaign was performed in the laboratory with radioactive calibration
sources to calibrate the imaging response on ground. A on-orbit calibration campaign was performed using the
Crab Nebula. Due to the huge satellite wobbling (1 deg) and continuous slewing (1 deg/day), a refined attitude
correction strategy has been implemented on photon-by-photon data to maintain the high imaging performances.
In this paper we summarize all the activities we performed for calibrating and optimizing the imaging capabilities,
from the assembly of the experiment to the on-orbit calibrations and we show the results achieved.
The Italian small satellite mission AGILE has been launched the 23rd of April 2007. SuperAGILE is the solidstate
hard X-ray imager of the mission. It is a coded-mask imager, with six arcmin angular resolution, a field of
view in excess of 1 steradian, and a gross energy resolution. Ground calibration campaigns have been performed
in the last year to optimize the detector response, for the energy calibration, to obtain the effective area at
various angles for various energy bands, to study location accuracy and angular resolution. In this paper we
report the preliminary results achieved.
The AGILE satellite has just finished the first and larger part of its commissioning phase. SuperAGILE successfully
passed the commissioning tests, and it is now in its final configuration. It is observing the X-ray sky
since the end of June as a part of the Science Verification Phase. The in-flight calibrations has been started and
will ended at the end of October. We show the first data obtained with the instrument in the first months of
observations.
SuperAGILE is the hard X-ray (15-45 keV) imager for the gamma-ray mission AGILE, currently scheduled for
launch in early 2007. It is based on 4 Si-microstrip detectors, with a total geometric area of 1444 cm2 (max
effective area 230 cm2), equipped with 4 one-dimensional coded masks. The 4 detectors are perpendicularly
oriented, in order to provide pairs of orthogonal one-dimensional images of the X-ray sky. The field of view
of each 1-D detector is 107° x 68°, at zero response, with an overlap in the central 68° x 68° area. The angular
resolution on axis is 6 arcmin. We present here the current status of the hardware development and the scientific
perspective.
The Flight Model of the SuperAGILE experiment was calibrated on-ground using an X-ray generator and individual radioactive sources at IASF Rome on August 2005. Here we describe the set-up, the measurements and the preliminary results of the calibration session carried out with the X-ray generator. The calibration with omnidirectional radioactive sources are reported elsewhere. The beam was collimated using a two slits system in order to reach a rectangular spot at the detector approximately 1800 μm × 100 μm in size. The long dimension was aligned with the detector strip, so that the short dimension could fall within one single detector strip (121 μm wide). The detector was then slowly moved continuously such that the beam effectively scanned along the coding direction. This measurement was done both at detection plane level (i.e., without collimator and mask) to characterize the detector response, and at experiment level (i.e., with collimator, mask and digital electronics), to study the imaging response. Aim of this calibration is the measurement of the imaging response at 0, 10 and 20 degrees off-axis, with a parallel beam, although spatially limited to a ~2 mm long section of the coded mask.
Development of multi-layer optics makes feasible the use of X-ray telescope at energy up to 60-80 keV: in this paper we discuss the extension of photoelectric polarimeter based on Micro Pattern Gas Chamber to high energy X-rays. We calculated the sensitivity with Neon and Argon based mixtures at high pressure with thick absorption gap: placing the MPGC at focus of a next generation multi-layer optics, galatic and extragalactic X-ray polarimetry can be done up till 30 keV.
The Flight model of SuperAGILE experiment was calibrated on-ground on August 2005 at IASF-Rome laboratories using standard radioactive X-rays sources. These omnidirectional sources were positioned at approximately 2 meters distance from the experiment. A method to correct for the beam divergence has been developed in order to use these measurements to derive information about the point spread function of the experiment for infinite distance sources. In this paper we describe the set-up of the measurements, the method to correct for the beam divergence and show preliminary results of the data analysis.
We present a concept study for a novel All Sky Monitor experiment employing very limited resources. Our experience in designing, building and testing SuperAGILE - the hard X-ray imager for the AGILE mission - has demonstrated the possibility to develop a medium-sensitivity, wide field imager, with (at launch stage) ~5.5 kg weight, 12 Watts power and 0.04 cubic meters volume. With these few resources, it can provide crossed one-dimensional images of 1/10th of the sky, with on-axis 6 arcminutes angular resolution and ~10 mCrab 1-day sensitivity in the 15-45 keV energy range. In this paper we introduce to the ASPEX (All Sky Project for Extraterrestrial X-rays) project and show how a much more efficient All Sky Monitor can now be designed using the same approach and techniques, overcoming a number of severe limitations suffered by SuperAGILE due to the context of the AGILE mission, for which it was designed. The low resources and its efficiency in localizing X-ray transients and in long-term monitoring the steady X-ray sky, make ASPEX a suitable option for several new mission concepts (e.g., PHAROS, ESTREMO, ...).
The AGILE Mission will explore the gamma-ray Universe with a very innovative instrument combining for the first time a gamma-ray imager (sensitive in the range 30 MeV - 50 GeV) and a hard X-ray imager (sensitive in the range 15-45 keV). An optimal angular resolution and a large field of view are obtained by the use of state-of-the-art Silicon detectors integrated in a very compact instrument. AGILE will be operational at the beginning of 2007 and it will provide crucial data for the study of Active Galactic Nuclei, Gamma-Ray Bursts, unidentified gamma-ray sources, Galactic compact objects, supernova remnants, TeV sources, and fundamental physics by microsecond timing.
Ronaldo Bellazzini, Luca Baldini, Francesco Bitti, Alessandro Brez, Francesco Cavalca, Luca Latronico, Marco Maria Massai, Nicola Omodei, Michele Pinchera, Carmelo Sgró, Gloria Spandre, Enrico Costa, Paolo Soffitta, Giuseppe Di Persio, Marco Feroci, Fabio Muleri, Luigi Pacciani, Alda Rubini, Ennio Morelli, Giorgio Matt, Giuseppe Cesare Perola
XEUS is a large area telescope aiming to rise X-ray Astronomy to the level of Optical Astronomy in terms of
collecting areas. It will be based on two satellites, locked on a formation flight, one with the optics, one with
the focal plane. The present design of the focal plane foresees, as an auxiliary instrument, the inclusion of a
Polarimeter based on a Micropattern Chamber. We show how such a device is capable to solve open problems
on many classes of High Energy Astrophysics objects and to use X-ray sources as a laboratory for a substantial
progress on Fundamental Physics.
X-Ray Polarimetry can be now performed by using a Micro Pattern Gas Chamber in the focus of a telescope. It
requires large area optics for most important scientific targets. But since the technique is additive a dedicated
mission with a cluster of small telescopes can perform many important measurements and bridge the 40 year gap
between OSO-8 data and future big telescopes such as XEUS. POLARIX has been conceived as such a pathfinder.
It is a Small Satellite based on the optics of JET-X. Two telescopes are available in flight configuration and three
more can be easily produced starting from the available superpolished mandrels. We show the capabilities of such
a cluster of telescopes each equipped with a focal plane photoelectric polarimeter and discuss a few alternative
solutions.
In this paper we describe the instrumentation and the software tools we developed to test the SuperAGILE Front-End Electronics (SAFEE) and Interface Electronics (SAIE). The SAFEE is based on twelve XAA1.2 ASICs (produced by IDE-AS). The Test Equipment hardware is composed of commercial VME modules and laboratory developed boards. Commercial VME boards were used for data acquisition and SAFEE handling. Laboratory developed boards provide signal conditioning, pulse generation, trigger system and timing. The VME based architecture assured a stable system for a period of years and a very high acquisition rate. The choice of 'laboratory-developed' boards allowed an easy and cost effective continuous improvement of the system.
Two Linux running PC were used, one for the "System Control" and data acquisition, the other one for data reduction and archiving. The s/w for DAQ, data-reduction, and analysis also was laboratory-developed and based on well-known tools.
The AGILE gamma-ray mission is in its Phase C-D. The Engineering model of the Payload has been built and tested, and the construction of the flight model has started. We present here the status of the SuperAGILE experiment, the 15-40 keV imaging monitor, based on Silicon microstrip technology and equipped with one dimensional coded masks. We show the design of the experiment and the results of testing campaigns carried out on the engineering model of the experiment.
KEYWORDS: Sensors, Silicon, Temperature metrology, Ions, Pulse generators, Power supplies, Capacitance, Interference (communication), Magnesium, Control systems
The XAA1.2 chip is a low noise, self-triggered, data-driven and sparse readout ASIC chip with 128 input channels designed as a front-end electronic circuit for silicon-microstrip detectors and manufactured by Ideas ASA (Norway). The XAA1.2 has been selected as the front-end electronic circuit of the SuperAGILE experiment on-board the AGILE satellite mission. This chip underwent to extensive laboratory tests to evaluate its scientific performances. Particularly we have measured the electronic noise and threshold voltage in both configurations stand alone and bonded to a silicon microstrip detector and we have tested the chip thermal stability and radiation damage. In this paper we describe the measurements and we discuss the results.
AGILE is an ASI gamma-ray astrophysics space Mission which will operate in the 30 MeV - 50 GeV range with imaging capabilities also in the 10 - 40 keV range. Primary scientific goals include the study of AGNs, gamma-ray bursts, Galactic sources, unidentified gamma-ray sources, diffuse Galactic and extragalactic gamma-ray emission, high-precision timing studies, and Quantum Gravity testing. The AGILE scientific instrument is based on an innovative design of three detecting systems: (1) a Silicon Tracker, (2) a Mini-Calorimeter, and (3) an ultralight coded mask system with Si-detectors (Super-AGILE). AGILE is designed to provide: (1) excellent imaging in the energy bands 30 MeV-50 GeV (5-10 arcmin for intense sources) and 10-40 keV (1-3 arcmin); (2) optimal timing capabilities, with independent readout systems and minimal deadtimes for the Silicon Tracker, Super-AGILE and Mini-Calorimeter; (3) large field of view for the gamma-ray imaging detector (~3 sr) and Super-AGILE (~1 sr). AGILE will be the only Mission entirely dedicated to source detection above 30 MeV during the period 2004-2006.
SuperAGILE is the X-ray instrument of the AGILE Mission. It is a set of silicon micro-strip detectors tiles coupled with a tungsten coded mask. The front end electronics of SuperAGILE is based on 48 ASIC XAA1.2 chips, each one collecting and conditioning the signals from 128 strips of the detector. Since this chip was not developed as a radiation resistant component for space applications and in order to predict and prevent the potential problems deriving from the space radiation environment, we irradiated two of such chips with ions of different chemical specie, ranging from 16O to 127I. At the 15 MV Tandem accelerator of the Laboratori Nazionali INFN di Legnaro we measured the occurrence of latch-up and Single Event Upset and the effects due to the absorbed total dose on the supply currents and on the bias currents which control the performances of the chip. In this paper we discuss how the results can be scaled to the AGILE environment and the impact of these data on the experiment design and on the observing strategy.
A Micropattern detector in the focus of a grazing incidence telescope is nowadays the most powerful tool to perform a sensitive and reliable measurement of the linear polarization of celestial X-ray sources. The actual implementation of such a completely new device results from a trade-off of various factors and can provide a break-through increase of sensitivity with respect to traditional instrumental approaches. The sensitivity depends on the effective area of the optics and the modulation factor and efficiency of the detector. The latter strongly depends on the filling gas through various factors, including the absorption probability, the length of track versus the pixel size, the blurring introduced by the lateral diffusion during the drift. We discuss the impact of the choice of the filling gas on the sensitivity and on the operative band of the instrument, while the noble gases drive the efficiency, the organic quenching gases impact both in reducing the scattering and producing most straight tracks and on reducing diffusion. Some design solution are discussed both for a low energy oriented and high energy oriented polarimeters.
We report on the development of a new higly efficient polarimeter, based on the photoelectric effect in gas, for the 2-10 keV energy range, a particularly interesting band for x-ray astronomy. We derive the polarization information by reconstructing the direction of photoelectron emission with a pixel gas detector. Attention is focused on the algorithms used in data analysis in order to maximize the sensitivity of the instrument. Monte Carlo simulation is also discussed in details.
We report on a new instrument that brings high efficiency to x-ray polarimetry, which is the last unexplored field of x-ray astronomy. It derives the polarization information from the tracks of the photoelectrons imaged by a finely subdivided gas pixel detector. The device can also do simultaneously good imaging, moderate spectroscopy and fast, high rate timing down to 150 eV. Moreover, being truly 2D, it is non dispersive and does not require rotation. The great immprovement of sensitivity will allow direct exploration of the most dramatic objects of the x-ray sky; with integrations of the order of one day we could perform polarimetry of Active Galactic Nuclei at the percent level, a breakthrough in this fascinating window of high energy astrophysics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.