GaAsN and InGaAsN semiconductor alloys with a small amount of nitrogen, so called dilute nitrides, are especially
attractive for telecom lasers and very efficient multijunction solar cells applications. The epitaxial growth of these
materials using MBE and MOVPE is a big challenge for technologists due to the large miscibility gap between GaAs and
GaN. Additionally, elaboration of the growth process of quaternary alloys InGaAsN is more complicated than GaAsN
epitaxy because a precise determination of their composition requires applying different examination methods and
comparison of the obtained results. This work presents the influence of the growth parameters on the properties and alloy
composition of the triple quantum wells 3×InGaAsN/GaAs grown by atmospheric pressure metal organic vapour phase
epitaxy AP MOVPE. Dependence of the structural and optical parameters of the investigated heterostructures on the
growth temperature and the nitrogen source concentration in the reactor atmosphere was analyzed. Material quality of
the obtained InGaAsN quantum wells was studied using high resolution X-Ray diffraction HRXRD, contactless electro-reflectance
spectroscopy CER, photoluminescence PL, secondary ion mass spectrometry SIMS, photocurrent PC and
Raman RS spectroscopies, deep level transient spectroscopy DLTS and transmission electron microscopy TEM.
We have investigated deep-level defects in InGaAsN/GaAs 3xQW structures by means of conventional as well as high-resolution
deep level transient spectroscopy (DLTS). The three samples were grown by atmospheric pressure
metalorganic vapour phase epitaxy (AP-MOVPE) in different growth temperatures (566°C, 575°C and 585°C). The DLTS measurements revealed four electron traps E1 (0.17-0.24 eV), E2 (0.36-0.38 eV), E3 (0.46-0.49 eV) and E4 (0.81-0.84 eV) and one hole trap H1(0.8 eV) in our structures. The electron trap E1 was associated with N-related complexes
while the other electron traps with native defects, usually observed in GaAs-based structures EL6, EL3 and EL2,
respectively. Finally, the trap E2 and H1, observed in the structure grown at lowest temperature, were associated with the
same trap, which can act as both an electron and hole trap. It was thus concluded that E2/H1 may be a generation-recombination
center.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.