Adverse air quality impacts human health and climate and has implications for environmental equity. The Compact Hyperspectral Air Pollution Sensor (CHAPS) is a newly designed small imaging spectrometer for remote sensing of nitrogen dioxide (NO2) and other air pollutants from space. It incorporates two emerging technologies, to achieve the miniaturization necessary to fit within a 6U CubeSat. The first is freeform optics, which can be used to reduce the size of an imaging spectrometer without compromising optical performance. We report the science requirements; preliminary, fully freeform and fully reflective optical design of the CHAPS demonstrator, CHAPS-D; and model its performance. The second technology is additive manufacturing, coupled with topology optimization, which has a number of potential advantages over traditional subtractive manufacturing. The instrument mechanical structure, including optical mounts and integral light baffles, and two of the optical elements will be additively manufactured using a high-strength nextgeneration aluminum alloy. We show preliminary results of additive manufacturing tests. CHAPS-D is currently being developed for ground-based and airborne testing.
Plastics are often used in mine and IEDs. Difficult to detect with traditional approaches, plastics are spectrally active in the shortwave and mid-infrared due to vibrational absorptions from the C-H bonds of which they are composed; bonds and vibrations that are diagnostic of and spectrally vary with composition. Hyperspectral infrared imaging has proven exceedingly capable of detecting and categorizing plastics. Here we pursue a dual-band imaging approach that leverages the ubiquitous presence of the ~1.7-micron harmonic of the ~3.4-micron fundamental absorption feature for a low SWaP (Size, Weight, and Power) instrument concept. The 1.7-micron band is also in a spectral region free of telluric and almost all geologic absorption features, making its presence in a reflectance spectrum almost a unique marker for plastics. We have developed and tested a two-camera, dual-band sensor, emphasizing imaging over spectroscopy and implementing on-camera processing to achieve near real-time, partially autonomous detection and imaging of plastic objects. The sensor has proven successful in discriminating and imaging plastics such as fiberglass, styrene, and acrylics from background materials such as grass, dirt, rocks, and brush. The sensor is challenged by certain plastics, especially thin, transparent plastics (less relevant to mines and IEDs) even if they are spectrally active near 1.7 microns. Also, photometric variations in the observing conditions can mask weak plastic signatures. We will discuss our current measurement and technical approach, the results and the challenges that remain to implementing an effective low SWaP sensor for the detection and imaging of plastic objects.
The Johns Hopkins University Applied Physics Laboratory (JHU/APL) is developing a compact, light-weight, and lowpower midwave-infrared (MWIR) imager called the Compact Midwave Imaging Sensor (CMIS), under the support of the NASA Earth Science Technology Office Instrument Incubator Program. The goal of this CMIS instrument development and demonstration project is to increase the technical readiness of CMIS, a multi-spectral sensor capable of retrieving 3D winds and cloud heights 24/7, for a space mission. The CMIS instrument employs an advanced MWIR detector that requires less cooling than traditional technologies and thus permits a compact, low-power design, which enables accommodation on small spacecraft such as CubeSats. CMIS provides the critical midwave component of a multi-spectral sensor suite that includes a high-resolution Day-Night Band and a longwave infrared (LWIR) imager to provide global cloud characterization and theater weather imagery. In this presentation, an overview of the CMIS project, including the high-level sensor design, the concept of operations, and measurement capability will be presented. System performance for a variety of different scenes generated by a cloud resolving model (CRM) will also be discussed.
The Johns Hopkins University Applied Physics Laboratory (JHU/APL) has created a unique design for a compact, lightweight, and low-power instrument called the Compact Midwave Imaging Sensor (CMIS). Funded by the NASA ESTO Instrument Incubator Program (IIP), the goal of this CMIS development project is to increase the technical readiness of CMIS for retrieval of cloud heights and atmospheric motion vectors using stereo-photometric methods. The low-cost, low size, weight and power (SWaP) CMIS solution will include high operating temperature (HOT) MWIR detectors and a very low power cooler to enable spaceflight in a 6U CubeSat. This paper will provide an overview of the CMIS project to include the high-level sensor design.
KEYWORDS: Sensors, Hyperspectral imaging, Spectrographs, Mirrors, Stray light, Short wave infrared radiation, Signal to noise ratio, Polarization, Telescopes, Space operations
The temporal variability, or phenology, of animals and plants in coastal zone and marine habitats is a function of geography and climatic conditions, of the chemical and physical characteristics of each particular habitat, and of interactions between these organisms. These conditions play an important role in defining the diversity of life. The quantitative study of phenology is required to protect and make wise use of wetland and other coastal resources. We describe a low cost space-borne sensor and mission concept that will enable such studies using high quality, broad band hyperspectral observations of a wide range of habitats at Landsat-class spatial resolution and with a 3 day or better revisit rate, providing high signal to noise observations for aquatic scenes and consistent view geometry for wetland and terrestrial vegetation scenes.
The LOng-Range Reconnaissance Imager (LORRI) is the high resolution imager for the New Horizons mission to the
Pluto system and the Kuiper Belt, which is the vast region of icy bodies extending roughly from 30 to 50 astronomical
units (AU). LORRI is a monolithic SiC, Ritchey-Chrétien telescope with a 20.8 cm diameter primary mirror and with an
0.29° field of view. The detector is a thinned, backside-illuminated charge-coupled device (CCD) operated in frame
transfer mode to obtain 1024 × 1024 pixel, panchromatic images over a bandpass of approximately 350 nm to 850 nm
with 4.96 μrad pixels. LORRI operated successfully at the New Horizons Jupiter encounter in Feb-Mar 2007 and made
challenging observations of faint sources, such as the Jovian rings within a few degrees of sunlit Jupiter and the
nightside of Io illuminated by Jupiter shine. Ambitious observations are planned at Pluto encounter including some with
LORRI pointed within 15° of the Sun. A unique program of inflight calibrations has measured LORRI's stray light
rejection using Jupiter and the Sun. The measured point source transmittance (PST) function for LORRI decreases from
145 on axis to 4×10-10 at 75° off-axis.
Long-term measurements of the global distributions of clouds, trace gases, and surface reflectance are needed for
the study and monitoring of global change and air quality. The Geostationary Imaging Fabry-Perot Spectrometer
(GIFS) instrument is an example of a next-generation satellite remote sensing concept. GIFS is designed
to be deployed on a geostationary satellite, where it can make continuous hemispheric imaging observations of
cloud properties (including cloud top pressure, optical depth, and fraction), trace gas concentrations, such as tropospheric
and boundary layer CO, and surface reflectance and pressure. These measurements can be made with
spatial resolution, accuracy, and revisit time suitable for monitoring applications. It uses an innovative tunable
imaging triple-etalon Fabry-Perot interferometer to obtain very high-resolution line-resolved spectral images of
backscattered solar radiation, which contains cloud and trace gas information. An airborne GIFS prototype and
the measurement technique have been successfully demonstrated in a recent field campaign onboard the NASA
P3B based at Wallops Island, Virginia. In this paper, we present the preliminary GIFS instrument design and
use GIFS prototype measurements to demonstrate the instrument functionality and measurement capabilities.
S. Conard, F. Azad, J. Boldt, A. Cheng, K. Cooper, E. Darlington, M. Grey, J. Hayes, P. Hogue, K. Kosakowski, T. Magee, M. Morgan, E. Rossano, D. Sampath, C. Schlemm, H. Weaver
The LOng-Range Reconnaissance Imager (LORRI) is an instrument that was designed, fabricated, and qualified for the New Horizons mission to the outermost planet Pluto, its giant satellite Charon, and the Kuiper Belt, which is the vast belt of icy bodies extending roughly from Neptune's orbit out to 50 astronomical units (AU). New Horizons is being prepared for launch in January 2006 as the inaugural mission in NASA's New Frontiers program. This paper provides an overview of the efforts to produce LORRI. LORRI is a narrow angle (field of view=0.29°), high resolution (instantaneous field of view = 4.94 μrad), Ritchey-Chretien telescope with a 20.8 cm diameter primary mirror, a focal length of 263 cm, and a three lens field-flattening assembly. A 1024 x 1024 pixel (optically active region), back-thinned, backside-illuminated charge-coupled device (CCD) detector (model CCD 47-20 from E2V Technologies) is located at the telescope focal plane and is operated in standard frame-transfer mode. LORRI does not have any color filters; it provides panchromatic imaging over a wide bandpass that extends approximately from 350 nm to 850 nm. A unique aspect of LORRI is the extreme thermal environment, as the instrument is situated inside a near room temperature spacecraft, while pointing primarily at cold
space. This environment forced the use of a silicon carbide optical system, which is designed to maintain focus over the operating temperature range without a focus adjustment mechanism. Another challenging aspect of the design is that the spacecraft will be thruster stabilized (no reaction wheels), which places stringent limits on the available exposure time and the optical throughput needed to accomplish the high-resolution observations required.
LORRI was designed and fabricated by a combined effort of The Johns Hopkins University Applied Physics Laboratory (APL) and SSG Precision Optronics Incorporated (SSG).
The LOng-Range Reconnaissance Imager (LORRI) is a panchromatic imager for the New Horizons Pluto/Kuiper belt mission. New Horizons is being prepared for launch in January 2006 as the inaugural mission in NASA's New Frontiers program. This paper discusses the calibration and characterization of LORRI.
LORRI consists of a Ritchey-Chretien telescope and CCD detector. It provides a narrow field of view (0.29°), high resolution (pixel FOV = 5 μrad) image at f/12.6 with a 20.8~cm diameter primary mirror. The image is acquired with a 1024 x 1024 pixel CCD detector (model CCD 47-20 from E2V). LORRI was calibrated in vacuum at three temperatures covering the extremes of its operating range (-100°C to +40°C for various parts of the system) and its predicted nominal temperature in-flight. A high pressure xenon arc lamp, selected for its solar-like spectrum, provided the light source for the calibration. The lamp was fiber-optically coupled into the vacuum chamber and monitored by a calibrated photodiode. Neutral density and bandpass filters controlled source intensity and provided measurements of the wavelength dependence of LORRI's performance. This paper will describe the calibration facility and design, as well as summarize the results on point spread function, flat field, radiometric response, detector noise, and focus stability over the operating temperature range.
LORRI was designed and fabricated by a combined effort of The Johns Hopkins University Applied Physics Laboratory (APL) and SSG Precision Optronics.
Calibration was conducted at the Diffraction Grating Evaluation Facility at NASA/Goddard Space Flight Center with additional characterization measurements at APL.
Long-term measurements of the global distribution of clouds and the surface reflectance are needed to provide inputs to climatological models for global change studies. The Geostationary Imaging Fabry-Perot Spectrometer (GIFS) instrument is a next-generation satellite concept, to be deployed on a geostationary satellite for continuous hemispheric imaging of cloud properties, including cloud top pressure, optical depth, fraction, and surface reflectance. This is an ideal approach to make these cloud property measurements with desired spatial resolution, accuracy, and revisit time. It uses an innovative tunable imaging triple-etalon Fabry-Perot interferometer to obtain images of high-resolution spectral line shapes of two O2 B-band lines in the backscattered solar radiation. The GIFS remote sensing technique takes advantage of the pressure broadening information embedded in the absorption line shapes to better determine cloud properties, especially for those clouds below 5 km. We present a preliminary instrument design, including the general instrument requirements.
The Stellar Absorption and Refraction Sensor (STARS) is a compact, large-aperture instrument that combines a UV-IR imaging spectrograph with a co-aligned visible-light imager to make simultaneous absorptive and refractive stellar occultation measurements. The absorption measurements provided by the spectrograph allow the determination of vertical profiles of atmospheric constituents. The coincident refraction observations made by the image yield high-precision measurements of atmospheric density, pressure, and temperature and provide independent knowledge of both the refracted light path and Rayleigh extinction, which are critical in reducing the uncertainty in the retrieved constituent profiles in the lower atmosphere. STARS employs a two-axis gimbaled telescope to acquire and track the star and a two-axis, high-precision, fast-steering mirror to correct for spacecraft jitter and maintain the star within the spectrograph field of view. The relative star position measured by the imager provides position feedback to the active tracking loop of the fast-steering mirror. With funding from NASA's Instrument Incubator Program, a laboratory facility has been developed to demonstrate the overall instrument performance and, in particular, its capability to acquire and track a setting, refracting, and scintillating star, to compensate for various degrees of platform jitter, and to provide the pointing knowledge required for accurate determination of the atmospheric quantities. The combination of built-in image tracking and motion compensation capabilities, small size, and limited spacecraft resource requirements makes STARS and its tracking mechanism suitable for deployment on existing and future commercial spacecraft platforms for applications that require high-precision pointing. In this paper, we present details of the instrument design and its expected performance based on our laboratory tests.
The Self-Calibrating H2O and O3 Nighttime Environmental Remote Sensor (SCHOONERS) is a compact, integrated UV-IR imaging spectrograph and imager. The instrument has a 25 cm diameter aperture and employs a two- axis gimbaled telescope to provide acquisition and tracking of the star. It also uses a two-axis high-precision vernier mirror to correct for spacecraft jitter and maintain the star within the field-of-view. The imaging spectrograph, covering a spectral range between 300 and 900 nm, measures the varying absorption of starlight as a star sets through the nighttime Earth's atmosphere to determine vertical profiles of atmospheric constituents. The relative star position measured by the co-aligned imager not only provides position feedback to the acting tracking loop of the vernier mirror, but also measures the star refraction angle for determining the atmospheric density and temperature profiles. The SCHOONERS scanning platform and its high- precision tracking mirrors provide 44 microradian azimuth pointing stability and 60 microrad altitude tracking accuracy (3(sigma) ). Its built-in image tracking and motion compensation mechanism, coupled with its small size and limited spacecraft resources required, makes it suitable for deployment on existing and future commercial spacecraft platforms as an instrument-of-opportunity after the year 2002. A laboratory facility has been developed to demonstrate the instrument performance, especially its capability to acquire and track a setting, refracting, and scintillating star, to compensate for various degrees of platform jitter, and to provide the pointing knowledge accuracy required for the determination of atmospheric density and temperature. Hardware includes an accurately moving variable intensity point source to simulate the star and motion stages to generate jitter at the instrument. Software simulates the stellar refraction, attenuation, and scintillation for a full end-to-end test of the instrument.
A polarimeter for characterization of the instrumental polarization of an imaging UV spectrometer has been designed. In the course of calibrating the polarimeter, the quarter-wave retarders were observed to possess polarization properties other than pure linear retardance. This forced the development of a complex procedure for the calibration of the retarders and a new generalized approach to polarimetric analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.