Using dual optical frequency comb (OFC) spectroscopy in the longwave infrared (LWIR), we demonstrate standoff detection of trace amounts of target compounds on diffusely scattering surfaces. The OFC is based on quantum cascade lasers (QCL) that emit ~1 Watt of optical power under cw operation at room temperature over coherent comb bandwidths approaching 100 cm-1. We overlap two nearly identical 1250 cm-1 QCL OFC sources so that the two interfering optical combs create via heterodyne a single comb in the radio frequency (rf) that represents the entire optical spectrum in a single acquisition. In a laboratory scale demonstration we show detection of two spectrally distinct fluorinated silicone oils, poly(methyl-3,3,3-trifluoropropylsiloxane) and Krytox™, that act as LWIR simulants for security relevant compounds whose room temperature vapor pressure is too low to be detected in the gas phase. These target compounds are applied at mass loadings of 0.3 to 90 μg/cm2 to sanded aluminum surfaces. Only the diffusely scattered light is collected by a primary collection optic and focused onto a high speed (0.5 GHz bandwidth) thermoelectrically cooled mercury cadmium telluride (MCT) detector. At standoff distances of both 0.3 and 1 meter, we demonstrate 3 μg/cm2 and 1 μg/cm2 detection limits against poly(methyl-3,3,3-trifluoropropylsiloxane) and Krytox™, respectively.
The development of two longwave infrared quantum cascade laser (QCL) based surface contaminant detection platforms supporting government programs will be discussed. The detection platforms utilize reflectance spectroscopy with application to optically thick and thin materials including solid and liquid phase chemical warfare agents, toxic industrial chemicals and materials, and explosives. Operation at standoff (10s of m) and proximal (1 m) ranges will be reviewed with consideration given to the spectral signatures contained in the specular and diffusely reflected components of the signal. The platforms comprise two variants: Variant 1 employs a spectrally tunable QCL source with a broadband imaging detector, and Variant 2 employs an ensemble of broadband QCLs with a spectrally selective detector. Each variant employs a version of the Adaptive Cosine Estimator for detection and discrimination in high clutter environments. Detection limits of 5 μg/cm2 have been achieved through speckle reduction methods enabling detector noise limited performance. Design considerations for QCL-based standoff and proximal surface contaminant detectors are discussed with specific emphasis on speckle-mitigated and detector noise limited performance sufficient for accurate detection and discrimination regardless of the surface coverage morphology or underlying surface reflectivity. Prototype sensors and developmental test results will be reviewed for a range of application scenarios. Future development and transition plans for the QCL-based surface detector platforms are discussed.
Michael Frish, Richard Wainner, Matthew Laderer, Mark Allen, James Rutherford, Paul Wehnert, Sean Dey, John Gilchrist, Ron Corbi, Daniele Picciaia, Paolo Andreussi, David Furry
Laser sensing enables aerial detection of natural gas pipeline leaks without need to fly through a hazardous gas plume. This paper describes adaptations of commercial laser-based methane sensing technology that provide relatively low-cost lightweight and battery-powered aerial leak sensors. The underlying technology is near-infrared Standoff Tunable Diode Laser Absorption Spectroscopy (sTDLAS). In one configuration, currently in commercial operation for pipeline surveillance, sTDLAS is combined with automated data reduction, alerting, navigation, and video imagery, integrated into a single-engine single-pilot light fixed-wing aircraft or helicopter platform. In a novel configuration for mapping landfill methane emissions, a miniaturized ultra-lightweight sTDLAS sensor flies aboard a small quad-rotor unmanned aerial vehicle (UAV).
We are building prototype chip-scale low-power integrated-optic gas-phase chemical sensors based on mid-infrared
(3-5μm) Tunable Diode Laser Absorption Spectroscopy (TDLAS). TDLAS is able to sense many gas phase chemicals
with high sensitivity and selectivity. Novel gas sensing elements using low-loss resonant photonic crystal cavities or
waveguides will permit compact integration of a laser source, sampling elements, and detector in configurations suitable
for inexpensive mass production. Recently developed Interband Cascade Lasers (ICLs) that operate at room temperature
with low power consumption are expected to serve as monochromatic sources to probe the mid-IR molecular spectral
transitions. Practical challenges to fabricating these sensors include: a) selecting and designing the high-Q microresonator
sensing element appropriate for the selected analyte; b) coupling laser light into and out of the sensing
element; and c) device thermal management, especially stabilizing laser temperature with the precision needed for
sensitive spectroscopic detection. This paper describes solutions to these challenges.
We are developing prototype chip-scale low-power integrated-optic gas-phase chemical sensors based on infrared
Tunable Diode Laser Absorption Spectroscopy (TDLAS). TDLAS is able to sense many gas phase chemicals with high
sensitivity and selectivity. Using semiconductor fabrication and assembly techniques, the low-cost integrated optic
TDLAS technology will permit mass production of sensors that have wide ranging industrial, medical, environmental,
and consumer applications. Novel gas sensing elements using low-loss resonant photonic crystal cavities or waveguides
will permit monolithic integration of a laser source, sampling elements, and detector on a semiconductor materials
system substrate. Practical challenges to fabricating these devices include: a) selecting and designing the high-Q micro-resonator
sensing element appropriate for the selected analyte; and b) device thermal management, especially stabilizing
laser temperature with the precision needed for sensitive spectroscopic detection. In this paper, we analyze the expected
sensitivity of micro-resonator-based structures for chemical sensing, and demonstrate a novel approach for exploiting
laser waste heat to stabilize the laser temperature.
We demonstrate a mid-IR semiconductor laser-based absorption spectrometer for field measurements of ambient CH4. The field sensor uses a type II quantum cascade laser (or interband cascade laser, ICL) operating near 3.3 µm to monitor a well-isolated line in the 3 fundamental band of CH4. The ICL operates in cw mode at cryogenic temperatures. The sensor uses a multipass cell that provides an optical path of ~7 m with a 0.25-m base path. Thermoelectrically cooled InAs detectors are used along with balanced ratiometric detection to achieve a precision of 15 ppbv for a 60-s integration time. Several successful field demonstrations are carried out at sites maintained by the University of New Hampshire.
An analysis of the single point reproducibility of TD-THz based paint thickness measurements demonstrated a precision
of 130 nm, corresponding to 0.1% of the measured thickness. A detailed model of the anticipated TD-THz waveforms
from samples of varying thickness indicates that an intrinsic uncertainty of 0.09% is anticipated in the absence of
environmental fluctuations. Therefore, the influence of oscillations in the THz field associated with the initial reflection
does not adversely impact the ability to extract accurate paint thickness information, and the noise associated with these
oscillations could limit the measurement uncertainty of a calibrated instrument under optimum laboratory conditions. In
the case of a deployed sensor, we anticipate that the accuracy will be degraded by environmental fluctuations.
The fabrication of thick orientation-patterned GaAs (OP-GaAs) films is reported using a two-step process where an OP-GaAs template with the desired crystal domain pattern was prepared by wafer fusion bonding and then a thick film was grown over the template by low pressure hydride vapor phase epitaxy (HVPE). The OP template was fabricated using molecular beam epitaxy (MBE) followed by thermocompression wafer fusion, substrate removal, and lithographic patterning. On-axis (100) GaAs substrates were utilized for fabricating the template. An approximately 350 μm thick OP-GaAs film was grown on the template at an average rate of ~70 μm/hr by HVPE. The antiphase domain boundaries were observed to propagate vertically and with no defects visible by Nomarski microscopy in stain-etched cross sections. The optical loss at ~2 μm wavelength over an 8 mm long OP-GaAs grating was measured to be no more than that of the semi-insulating GaAs substrate. This template fabrication process can provide more flexibility in arranging the orientation of the crystal domains compared to the Ge growth process and is scalable to quasi-phase-matching (QPM) devices operating from the IR to terahertz frequencies utilizing existing industrial foundries.
Tunable Diode Laser Absorption Spectroscopy (TDLAS) has evolved over the past decade from a laboratory specialty to an accepted, robust, and reliable technology for trace gas sensing. Some applications include improving efficiency of gas leak detection surveying, monitoring and controlling trace gases in chemical and pharmaceutical processing, and monitoring emissions in energy production plants. The recent advent of lightweight battery-powered standoff TDLAS sensors is enabling novel applications for remote gas sensing and non-contact process monitoring. This paper provides an overview of these next-generation TDLAS tools.
We are developing a mid-IR ICL-based sensor for field measurements of ambient CH4. We describe some of the design considerations for this sensor. Our sensor uses a Type II Quantum Cascade Laser (or Interband Cascade Laser, ICL) operating near 3.3 μm to monitor a well-isolated line in the υ3 fundamental band of CH4. The ICL operates in cw mode at cryogenic temperature. The sensor consists of two major components, an optical breadboard containing the laser, transfer optics, sample cell, and detectors, and an instrumentation module containing power supplies and system control computer. Light from the laser is collimated using a reflective microscope objective and transported to a multipass cell via a simple optics train. The multipass cell provides an optical path of ~7 meters in an 0.25 m base path. The spectrometer uses TE-cooled InAs detectors along with our Balanced Ratiometric Detection. Our measured precision for CH4 is 15 ppbv for a 60 sec integration time. We report on additional sensor characterization and data from recent field trials at two facilities maintained by the University of New Hampshire.
Mid infrared Quantum Cascade (QCL) and Interband Cascade Lasers (ICL) coupled with cavity-enhanced techniques, have proven to be sensitive optical diagnostic tools for both atmospheric sensing as well as breath analysis. In this work, a TE-cooled, pulsed QCL and a cw ICL are coupled to high finesse cavities, for trace gas measurements of nitric oxide, carbon dioxide, carbon monoxide and ethane. QCL's operating at 5.26 μm and 4.6 μm were used to record ICOS spectra for NO, CO2, and CO. ICOS spectra of C2H6 were recorded at 3.35 μm using an ICL. Ringdown decay times on the order to 2-3 μs are routinely obtained for a 50 cm cavity resulting in effective pathlengths on the order of 1000 meters. The sample cell is compact with a volume of only 60ml. Details of the QCL and ICL cavity enhanced spectrometers are presented along with the detection results for trace gas species. Here we report a detection limit of 0.7 ppbv in 4 s for NO in simulated breath samples as well as human breath samples. A preliminary detection limit of 250 pptv in 4 s for CO is obtained and 35 ppb in 0.4 s for C2H6.
Trace gas sensing and analysis by Tunable Diode Laser Absorption Spectroscopy (TDLAS) has become a robust and reliable technology accepted for industrial process monitoring and control, quality assurance, environmental sensing, plant safety, and infrastructure security. Sensors incorporating well-packaged wavelength-stabilized near-infrared (1.2 to 2.0 μm) laser sources sense over a dozen toxic or industrially-important gases. A large emerging application for TDLAS is standoff sensing of gas leaks, e.g. from natural gas pipelines. The Remote Methane Leak Detector (RMLD), a handheld standoff TDLAS leak survey tool that we developed, is replacing traditional leak detection tools that must be physically immersed within a leak to detect it. Employing a 10 mW 1.6 micron DFB laser, the RMLD illuminates a non-cooperative topographic surface, up to 30 m distant, and analyzes returned scattered light to deduce the presence of excess methane. The eye-safe, battery-powered, 6-pound handheld RMLD enhances walking pipeline survey rates by more than 30%. When combined with a spinning or rastering mirror, the RMLD serves as a platform for mobile leak mapping systems. Also, to enable high-altitude surveying and provide aerial disaster response, we are extending the standoff range to 3000 m by adding an EDFA to the laser transmitter.
Industrial applications using tunable diode laser technology for process gas monitoring are often faced with technical challenges because of dynamic operating conditions in the presence of high particle densities and high temperature. Furthermore, issues related to alignment stability and maintenance requirements must be overcome for industry acceptance of the sensing technology. To address these technical challenges a novel near infrared tunable diode laser system for monitoring CO, H2O and gas temperature is presented. The system incorporates balanced ratiometric detection and a variable laser power delivery scheme allowing the launch laser power to vary between 2-248 mW while maintaining a constant reference power. Feedback control is used to adjust the level of laser power delivered to the process based on the light transmission through the measurement zone. Results are presented using the system on a 500 kW oxy-fuel pilot furnace with controlled particle injection to simulate industrial conditions in preparation for field test campaign measuring the off-gas of an electric arc (EAF) steel-melting furnace. For the industrial test, monitoring on the EAF process can be considered one of the harshest environments to perform a measurement with particle densities rising above 100 g/Nm3 and temperatures up to 1800°C. In addition, special requirements are needed to integrate the sensor into the process because of the high level of mechanical vibration, high and varying ambient temperatures, EMF interference sources, and protection against flying debris.
Recent advances in current-pumped, bandgap-engineered semiconductor lasers have dramatically impacted laser-based sensor concepts for in-situ trace species measurement and standoff sensing applications. These devices allow a common technology platform to access strong fundamental vibrational absorption transitions of many gases, liquids, and solids in the mid-wave and long-wave IR, as well as far-IR, or THz. The THz wavelength region is particularly interesting for applications related to structure penetrating detection of hidden materials and biomolecular spectroscopy. This presentation will briefly review the important properties of these lasers as they apply to sensor design and present highlights of recent sensor development activity for trace gas analysis in environmental and biomedical applications, remote sensing LIDAR systems, and detection of hidden explosives.
KEYWORDS: Sensors, Absorption, Process control, Control systems, Signal processing, Oxygen, Gases, Tunable diode lasers, Absorption spectroscopy, Gas sensors
Trace gas analysis by near-infrared Tunable Diode Laser Absorption Spectroscopy (TDLAS) has evolved over the past decade from a laboratory specialty to an accepted, robust, and reliable industrial process monitoring and control technology. Early industrial-quality TDLAS analyzers occupied full instrumentation racks and frequently cost several hundred thousands of dollars to purchase and install. The technology has now been refined to the point where complete TDLAS analyzers are available in lightweight battery-operated packages similar to a smoke detector that cost a few thousand dollars. This paper summarizes the current state-of-the-art in near-IR TDLAS sensors, focusing on miniature low-cost devices, and some of their applications.
The THz spectra of the high explosives, HMX, RDX, PETN, and TNT were measured using the technique of Time Domain THz (TD-THz) spectroscopy, and resonances attributed to phonon bands were observed. The TD-THz methods used to obtain these spectra are described and strategies for improved data collection methods are outlined. Concepts for through container DIfferential Absorption Lidar (DIAL) are outlined and the suitability of TD-THz methods for DIAL sensing is discussed.
Energy intensive industries such as steel, aluminum, and glass require combustion processes that are characteristically at high temperature with high levels of particulate matter. Monitoring and control of these processes for improved efficiency, pollutant reduction, and product quality requires a sensor adaptable for such harsh environments. Traditional industrial monitoring relies on extractive sampling that requires frequent maintenance due to probe plugging or corrosion and routine calibration. In addition, capturing the temporal behavior of the process can be problematic with extractive sampling systems because of the slow response time associated with the sampling line lengths and slow response analyzers. To meet the demands of these harsh combustion processes the ideal sensor would perform in-situ process monitoring, require little or no maintenance and provide real-time process information
The use of tunable diode lasers based on absorption monitoring overcomes many of the problems associated with conventional extractive sampling. However, the majority of industrial combustion processes will undergo temperature variations along with changes in the atmosphere oxidation or reducing state during normal operation. Therefore, temperature monitoring along with key combustion species monitoring that describes the atmosphere e.g., O2 and CO, is often necessary for optimal process control. The temperature is not only a useful parameter describing the state of the process, but is needed to accurately determine the species concentration since the absorption measured is dependent on temperature. To monitor both reducing and oxidizing combustion atmospheres in addition to gas temperature requires a diode laser system capable of multiple species monitoring. Here we describe an industrial prototype system operating in the near-infrared for simultaneous monitoring of O2 (.76 μm), CO (1.5 μm), H2O (1.5 μm) and gas temperature. The prototype system addresses the issues of added complexity with multiple species monitoring by using only two diode lasers and a beam launch and receiver optical design to discriminate the vastly different laser wavelengths while suppressing background radiation noise and beam steering from thermal gradients. Measurement results using the system for industrial process monitoring on a 100-ton/hr steel reheat furnace are presented. The measurements in this test were conducted at different zones in the furnace and at different heights relative to the processed material. The results show dynamic variations in concentration and temperature that could aid in improved atmosphere control.
The potential container penetrating capabilities of THz radiation leads to possible applications for container penetrating sensors for biological hazards. Such an approach requires the presence of distinct THz frequency resonances in the target compounds coupled with sufficiently transparent container materials to allow through container sensing. The results of a THz spectroscopic survey of container and clothing materials are presented along with spectra of materials that were chosen as simulants and markers for illicit biological substances.
The spectroscopic data presented show at least partial transparency for materials commonly used for clothing and packaging. We also measure distinct spectral signatures in dipicolinic acid, calcium dipicolinate, peptidoglycan, and 2,6-diaminopimelic acid, biologically significant molecules that are indicative of hazardous spore forming bacteria. These spectra differ significantly from those of the container materials to provide a potential contrast mechanism which could be used for identification.
12 A new optical tool, which will help petrochemical refinery and chemical processing plant personnel locate the source of a toxic or hazardous gas leak while remaining outside the perimeter of the processing area, has been demonstrated. This sensor is capable of locating leaks from a distance of about 20 m, with a response time of less than 1 second. By enhancing the speed with which leaks can be located, the risk of an incipient failure becoming a catastrophic failure is reduced significantly. The tool is based on Tunable Diode Laser Absorption Spectroscopy (TDLAS). TDLAS is currently being utilized in these industrial environments in permanently-installed open-path configurations to sense releases of selected gases as they exit the processing area. The sensor described here combines a lightweight, portable optical transceiver with battery-operated electronics in a single hand-held package. By standing in a safe area and `shining' the eye-safe laser beam emanating from this device onto suspected leak sources, operators may rapidly isolate the source while minimizing their potential exposure to the hazard. The sensor can be configured to sense leaks resulting in path-integrated concentrations of, for example, 2 ppm-m of hydrogen fluoride, 200 ppm-m of hydrogen sulfide, or 10 ppm-m of methane.
12 Recent advances in mid-IR semiconductor laser technology based on intersubband transitions in InGaAs quantum wells promise a dramatic impact on tunable diode laser-based sensors for trace gases. This paper reports recent progress toward this realization of room-temperature laser-based sensors for combustion-generated pollutants such as NOx and SOx. Laboratory measurements of SO2 at 8.6 micrometers are presented with detection limits on the order of 1 ppm. Extensions of these approaches for higher sensitivity measurements in exhaust gas conditions are described, as well as measurements of SO3.
12 To address the inherent issues with extractive sampling, Air Liquide and PSI are collaborating on the development of an in-situ multi-functional near-IR tunable diode laser system. The system is specifically targeted for application in harsh combustion environments with flue gas temperatures > 1600 degree(s)C and high particle densities. The multiplexing capability of the diode laser system allows near simultaneous detection of CO, O2, and H2O. These are essential species in characterizing the combustion state of the process, i.e., fuel-rich or fuel-lean, and the flue gas temperature. Sensor development and testing are conducted on a 700 kW oxy-fuel pilot furnace to evaluate the performance under simulated industrial conditions. Here we present pilot test results for dynamic stoichiometry changes, effect of particle entrainment, and air infiltration monitoring.
With stricter environmental regulations, optimization of the combustion process for reduced pollutant emission and higher fuel efficiency has become an industry objective. To achieve these objectives, continuous monitoring of key processes parameters such as temperatures, fuel and oxidant input, and flue gas composition is required. For flue gas composition monitoring conventional extractive sampling techniques are typically used. However these techniques suffer from slow response time due to long sample lines and are sensitive to plugging problems when applied to particle-laden flows. Using in-situ monitoring with near-IR tunable diode lasers (TDL) eliminates the problems encountered with extractive sampling. The chemical species to be monitored dictates the wavelength range of the diode lasers used. These lasers are rapidly tuned over an absorption line to obtain concentration along the line-of-sight path. In addition, gas temperature can be measured by scanning the laser over multiple rotational lines of a target molecule. Here we demonstrate the feasibility of using TDL's for in-situ O2 monitoring on the exhaust end of Air Liquide's oxy-fuel pilot furnace. Tests were conducted at various operating conditions and compared with conventional extractive sampling measurements. The response time of the technique is demonstrated by measurements conducted on a dynamic system where the fuel flow is oscillated at low frequencies. In addition, to study the effect of dirty gas streams typically found on industrial processes, seed particles were introduced into the burner to simulate particle-laden flows.
The verification of low water vapor impurity levels in semiconductor manufacturing feed gas supplies is becoming critically important for the development of advanced electronic devices. Ammonia is one of the important precursor gases for electronic manufacturing. In this paper, we present data from a water vapor absorption spectroscopy sensor designed to continuously measure ppb water impurities in pure ammonia gas with a 1 Hz bandwidth. The sensor is built using a near-IR diode laser, commercial fiber optic components, room-temperature InGaAs photodiodes, an ultra- sensitive balanced radiometric detection circuit, and a modified commercially available multipass cell. We present water vapor collisional broadening data by ammonia used to determine the optimal operating pressure for maximum system sensitivity. The commercial multipass cell was modified for ease of alignment, a nearly continuously variable pathlength, and to minimize the atmospheric air pathlength outside of the cell. The computer- controlled sensor is applicable to making water impurity measurements in a number of additional commercially important gases, such as hydrogen chloride, hydrogen fluoride, hydrogen bromide, silane, etc. The sensor is also applicable to moisture measurements in natural gas, and manufacturing dryer applications, such as those found in the plastics industry or the pharmaceutical industry, where in-line process control is critical.
New sensor concepts base don rapidly tunable, room- temperature diode laser absorption are being developed for a variety of aeropropulsion testing and control applications. The sensors are compact, rugged, capable of remote operation, and sensitive to a number of important control parameters. This paper describes recent progress in the development of three specific sensor platforms: inlet air mass flux for in-flight aeroengine control; simultaneous density, temperature, and velocity measurements in high- speed propulsion test facilities; and multi-species emissions monitoring. The measurement principles and system architectures are reviewed, along with sample laboratory and field test data.
Recent advances in room-temperature tunable diode lasers and ultrasensitive electronic noise quieting detection techniques now enable a new generation of compact, optoelectronic, ultrasensitive trace gas sensors. These advances are key to producing sensors capable of routine and extended field use. We achieve near shot noise-limited signal detection using a novel, balanced ratiometric detector (BRD) which permits measurements of absorbances of 1:106. High sensitivity is achieved by coupling this technology with an extended optical pathlength. The BRD is characterized by a wide linear dynamic range. A 10 Hz measurement rate enables ground level flux measurements or airborne concentration measurements. We will present an overview of two applications of our ultrasensitive detection technology to in situ atmospheric sensing. The first sensor is being developed to monitor boundary layer NO2 fluxes. This sensor operates at 670 nm, utilizes an open multipass optical cell, and has a sub-ppbv detection sensitivity. The second sensor is an airborne, near IR diode laser hygrometer. The sensor uses an in-situ air measurement probe housing a 50 cm, open optical path to circumvent problems inherent in extractive sampling. The sensor is capable of measuring water vapor throughout the troposphere and has a sensitivity of 0.5 ppmv at the tropopause.
We describe several diode laser-based instruments that can detect important species in chemical oxygen iodine lasers (COIL). Species detected include: water vapor, atomic iodine, and ground state oxygen. The sensors allow non-intrusive, real-time measurements from which one can determine small signal gain and the singlet delta oxygen yield. The water vapor concentrations can also be continuously monitored. The sensitivities of the sensors are sufficient for all the conditions found in typical COIL devices. The room temperature diode lasers are miniature and fiber coupled. Data for all three species are presented.
Recent advances in room-temperature tunable diode lasers, fiberoptic beam transport, and sensitive detection strategies now permit in-stream sensing of numerous parameters relevant to aeropropulsion monitoring and control. These include density measurements of important flow constituents such as O2, H2O, CO2, and NOx. Based on path-averaged absorption measurements, the basic density measurements can be expanded to include other gasdynamic properties such as temperature and velocity. Simultaneous, multiparameter measurements allow determination of high order system parameters such as mass flux and thrust continuously and in real-time. This paper describes several sensor development efforts, exhaust mass flux, and emissions monitoring. Example measurements from laboratory configurations are presented along with performance projections for test-stand and flight systems. Integration issues with full-scale hardware and control opportunities are also discussed.
A numerical method for the analysis of the fast axial flow glow discharge CO2 laser has been developed. The method is based on the self-consistent solution to the 1-D steady-state glow discharge equations, the gas dynamic equations, and the vibrational relaxation equations. The discharge equations include the continuity ones for the electrons, the positive and negative ions, and Poisson's equation for the electric field. The three-mode relaxation model for the vibrational kinetics and the plane-parallel optical resonator model have been used. This approach does not require previous assignment of the discharge power distribution and enables obtaining the discharge structure including the near-electrode regions in addition to the laser characteristics.
The development of laser based diagnostics for a variety of media has been one of the most important applications of lasers. Techniques such as laser induced fluorescence are now capable of determining important parameters such as species concentration and temperature in combustion media and in other environments. In this talk we will discuss how some of the unique characteristics of excimer lasers have been exploited for these applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.