Induction of heat shock protein (Hsp) expression correlates with cytoprotection, reduced tissue damage, and accelerated healing in animal models. Since Hsps are transcriptionally activated in response to stress, they can act as stress indicators in burn injury or surgical procedures that produce heat and thermal change. A fast in vivo readout for induction of Hsp transcription in tissues would allow for the study of these proteins as therapeutic effect mediators and reporters of thermal stress/damage. We used a transgenic reporter mouse in which a luciferase expression is controlled by the regulatory region of the inducible 70 kilodalton (kDa) Hsp as a rapid readout of cellular responses to laser-mediated thermal stress/injury in mouse skin. We assessed the pulse duration dependence of the Hsp70 expression after irradiation with a CO2 laser at 10.6 μm in wavelength over a range of 1000 to 1 ms. Hsp70 induction varied with changes in laser pulse durations and radiant exposures, which defined the ranges at which thermal activation of Hsp70 can be used to protect cells from subsequent stress, and reveals the window of thermal stress that tissues can endure.
The cytoprotective response to thermal injury is characterized by transcriptional activation of "heat shock proteins" (hsp) and proinflammatory proteins. Expression of these proteins may predict cellular survival. Microarray analyses were performed to identify spatially distinct gene expression patterns responding to thermal injury. Laser injury zones were identified by expression of a transgene reporter comprised of the 70 kD hsp gene and the firefly luciferase coding sequence. Zones included the laser spot, the surrounding region where hsp70-luc expression was increased, and a region adjacent to the surrounding region. A total of 145 genes were up-regulated in the laser irradiated region, while 69 were up-regulated in the adjacent region. At 7 hours the chemokine Cxcl3 was the highest expressed gene in the laser spot (24 fold) and adjacent region (32 fold). Chemokines were the most common up-regulated genes identified. Microarray gene expression was successfully validated using qRT- polymerase chain reaction for selected genes of interest. The early response genes are likely involved in cytoprotection and initiation of the healing response. Their regulatory elements will benefit creating the next generation reporter mice and controlling expression of therapeutic proteins. The identified genes serve as drug development targets that may prevent acute tissue damage and accelerate healing.
Liposomal formulations of drugs have been shown to enhance drug efficacy by prolonging circulation time, increasing local concentration and reducing off-target effects. Controlled release from these formulations would increase their utility, and hyperthermia has been explored as a stimulus for targeted delivery of encapsulated drugs. Use of lasers as a thermal source could provide improved control over the release of the drug from the liposomes with minimal collateral tissue damage. Appropriate methods for assessing local release after systemic delivery would aid in testing and development of better formulations. We use in vivo bioluminescence imaging to investigate the spatiotemporal distribution of luciferin, used as a model small molecule, and demonstrate laser-induced release from liposomes in animal models after systemic delivery. These liposomes were tested for luciferin release between 37 and 45 °C in PBS and serum using bioluminescence measurements. In vivo studies were performed on transgenic reporter mice that express luciferase constitutively throughout the body, thus providing a noninvasive readout for controlled release following systemic delivery. An Nd:YLF laser was used (527 nm) to heat tissues and induce rupture of the intravenously delivered liposomes in target tissues. These data demonstrate laser-mediated control of small molecule delivery using thermally sensitive liposomal formulations.
Fourier transform infrared (FTIR) spectroscopy is sensitive to the molecular composition of tissue and has the potential to identify premalignant tissue (dysplasia) as an adjunct to endoscopy. We demonstrate collection of mid-infrared absorption spectra with a silver halide (AgCl0.4Br0.6) optical fiber and use spectral preprocessing to identify optimal subranges that classify colonic mucosa as normal, hyperplasia, or dysplasia. We collected spectra (n=83) in the 950 to 1800 cm−1 regime on biopsy specimens obtained from human subjects (n=37). Subtle differences in the magnitude of the absorbance peaks at specific wave numbers were observed. The best double binary algorithm for distinguishing normal-versus-dysplasia and hyperplasia-versus-dysplasia was determined from an exhaustive search of spectral intervals and preprocessing techniques. Partial least squares discriminant analysis was used to classify the spectra using a leave-one-subject-out cross-validation strategy. The results were compared with histology reviewed independently by two gastrointestinal pathologists. The optimal thresholds identified resulted in an overall sensitivity, specificity, accuracy, and positive predictive value of 96%, 92%, 93%, and 82%, respectively. These results indicated that mid-infrared absorption spectra collected remotely with an optical fiber can be used to identify colonic dysplasia with high accuracy, suggesting that continued development of this technique for the early detection of cancer is promising.
We demonstrate the proof of concept for use of a fiber optic FTIR instrument to perform in vivo detection of
colonic neoplasia as an adjunct to medical endoscopy. FTIR is sensitive to the molecular composition of tissue, and can
be used as a guide for biopsy by identifying pre-malignant tissue (dysplasia). First, we demonstrate the use of a silver
halide optical fiber to collect mid-infrared absorption spectra in the 950 to 1800 cm-1 regime with high signal-to-noise
from biopsy specimens of colonic mucosa tissue ex vivo. We observed subtle differences in wavenumber and magnitude
of the absorbance peaks over this regime. We then show that optimal sub-ranges can be defined within this spectral
regime and that spectral pre-processing can be performed to classify the tissue as normal, hyperplasia, or dysplasia with
high levels of performance. We used a partial least squares discriminant analysis and a leave-one-subject-out crossvalidation
strategy to classify the spectra. The results were compared with histology, and the optimal thresholds resulted
in an overall sensitivity, specificity, accuracy, and positive predictive value of 96%, 92%, 93%, and 82%, respectively
for this technique. We demonstrate that mid-infrared absorption spectra can be collected remotely with an optical fiber
and used to identify colonic dysplasia with high accuracy. We are now developing an endoscope compatible optical
fiber to use this technique clinically for the early detection of cancer.
Laser surgical ablation is achieved by selecting laser parameters that remove confined volumes of target tissue and cause minimal collateral damage. Previous studies have measured the effects of wavelength on ablation, but neglected to measure the cellular impact of ablation on cells outside the lethal zone. In this study, we use optical imaging in addition to conventional assessment techniques to evaluate lethal and sublethal collateral damage after ablative surgery with a free-electron laser (FEL). Heat shock protein (HSP) expression is used as a sensitive quantitative marker of sublethal damage in a transgenic mouse strain, with the hsp70 promoter driving luciferase and green fluorescent protein (GFP) expression (hsp70A1-L2G). To examine the wavelength dependence in the mid-IR, laser surgery is conducted on the hsp70A1-L2G mouse using wavelengths targeting water (OH stretch mode, 2.94 µm), protein (amide-II band, 6.45 µm), and both water and protein (amide-I band, 6.10 µm). For all wavelengths tested, the magnitude of hsp70 expression is dose-dependent and maximal 5 to 12 h after surgery. Tissues treated at 6.45 µm have approximately 4× higher hsp70 expression than 6.10 µm. Histology shows that under comparable fluences, tissue injury at the 2.94-µm wavelength was 2× and 3× deeper than 6.45 and 6.10 µm, respectively. The 6.10-µm wavelength generates the least amount of epidermal hyperplasia. Taken together, this data suggests that the 6.10-µm wavelength is a superior wavelength for laser ablation of skin.
Induction of heat shock protein (Hsp) expression appears to correlate with a cytoprotective effect in cultured cells and with improved healing of damaged tissues in animal models and in humans. This family of proteins can also serve as indicators of thermal stress in cases of burn injury or surgical procedures that produce heat. Thus, a rapid in vivo readout for induction of Hsp transcription would facilitate studies of Hsp genes and their encoded proteins as mediators of therapeutic effects and as reporters of thermal damage to tissues. We created a transgenic reporter mouse where expression of luciferase is controlled by the regulatory region of the inducible 70 kDa Hsp, and assessed activation of Hsp70 transcription in live animals in response to rapid, high temperature stresses using in vivo bioluminescence imaging (BLI). This model can be used to noninvasively reveal levels of Hsp70 transcription in living tissues, and has utility in studies of the predictive and protective effects of Hsp70 expression, and of various stress responses in tissues.
Many medical laser procedures require selecting laser operating parameters that minimize undesirable tissue damage. In
this study, heat shock protein 70(hsp70) gene expression was used as a sensitive marker for laser-induced thermal
damage. Wound repair and hsp70 expression were compared after surgery with the free electron laser(FEL) as a
function of wavelength(&lgr;) and radiant exposure(H). Damage was assessed at &lgr; = 6.45, 6.10, and 2.94 &mgr;m using 8-20
J/cm2. The FEL beam (&Vpgr;r=200 &mgr;m,30Hz,&tgr;p =5&mgr;s) was delivered to produce a 6.5 mm square wound. hsp70 expression
was assessed using a transgenic mouse strain with the hsp70 promoter driving luciferase and eGFP expression.
Bioluminescent imaging (BLI) was monitored non-invasively and in real time. Hsp70 protein was visualized with laser
confocal imaging, blood velocity was measured with 2D-laser doppler, and depth of tissue damage was measured using
histological methods. BLI verified the model's sensitivity and peak hsp70 expression was bi-phasic, with maxima
occurring 12 and 24 hours after FEL irradiation. hsp70 expression exhibited wavelength-dependence, and it increased
with radiant exposure. Histology indicated that tissue damage at 6.45 µm was ~2x deeper than 6.10 &mgr;m. Quantitative
BLI with the Hsp70-luc transgene can be used to non-invasively measure gene expression in laser-tissue interaction
studies.
In vivo bioluminescence imaging (BLI) is a powerful method of in vivo molecular imaging based on the use of optically active luciferase reporter genes. Although this method provides superior sensitivity relative to other in vivo imaging methods, spatial resolution is poor due to light scattering. The objective of this study was to use hyperosmotic agents to reduce the scattering coefficient and hence improve spatial resolution of the BLI method. A diffusing fiber tip was used to simulate an isotropic point source of bioluminescence emission (550 to 650 nm). Mouse skin was treated in vitro and in vivo with glycerol (50%, 30 min) and measurements of optical properties, and imaging photon counts were made before, during, and after application of glycerol to the skin sample. Glycerol application to mouse skin had little effect on the absorption coefficient but reduced the reduced scattering coefficient by more than one order of magnitude. This effect was reversible. Consequently, the spot size (i.e., spatial resolution) of the bioluminescence point source imaged through the skin decreased by a factor of 2 (550-nm light) to 3 (650-nm light) after 30 min. Simultaneously, an almost twofold decrease in the amount of light detected by the BLI system was observed, despite the fact that total transmission increased 1.7 times. We have shown here that multiply scattered light is responsible for both observations. We have shown that applying a hyperosmotic clearing agent to the skin of small rodents has the potential to improve spatial resolution of BLI owing to a reduction in the reduced scattering coefficient in the skin by one order of magnitude. However, reducing the scattering coefficient reduces the amount of light reaching the camera due to a reduction in the amount of multiply scattered light that reaches the camera aperture and thus reducing the sensitivity of the method.
The Mark-III Free Electron Laser (FEL), tuned to λ=6.45 μm has been demonstrated to provide for efficient ablation in ocular and neural tissues with minimal collateral damage. To date, the role of the FEL pulse structure on the mechanism of ablation has not been determined. In an effort to study the role of the FEL micropulse on the ablation of corneal tissue, the native pulse structure of the FEL, a 2.85 gigahertz repetition of picosecond pulses within a five microsecond macropulse envelope, was changed using a a pulse stretcher. This device changes the duration of the micropulse from 1 picosecond to 30-200 picoseconds in length, thus reducing the peak intensity of the micropulse by as much as 200x the original intensity, while the macropulse energy remains unchanged.
Two basic metrics were studied: the ablation threshold on water and the ablation crater depth on gelatin. These metrics were employed at λ=6.45 and 6.1 μm for 1, 100, and 200 picoseconds in micropulse duration. The results showed a very slight difference between the 1, 100, and 200 picosecond micropulse duration, given a 200 fold decrease in peak energy for both the threshold and crater depth measurements. Brightfield imaging was also performed to probe the ablation dynamics and showed no difference between the 1 and 200 ps micropulses.
The effect of changing the micropulse duration was studied on the ablation of canine cornea. Craters (500 micron diameter) were created with 25 pulses at three times the ablation threshold as determined for water on freshly enucleated corneas within 12 hours of removal. Three rows of seven craters were created on the center of each cornea. The native one picosecond micropulse and 200 picosecond stretched micropulse were compared at λ=6.1 and 6.45 μm. Histological data shows that less thermal damage is present at 6.1 μm compared with 6.45 μm; however, there is no significant difference between the native and stretched pulses with respect to thermal damage.
The Mark-III Free Electron Laser (FEL), tuned to 6.45 microns in wavelength has been demonstrated to provide for efficient ablation in ocular, neural, and dermal tissues with minimal collateral damage. To date, the role of the unique pulse structure of the FEL on the ablation mechanism has not been determined. In this study, the native pulse structure of the FEL, a 2.85 gigahertz repetition of picosecond pulses within a five microsecond macropulse envelope, was changed using a pulse stretcher. This device changes the duration of the micropulse from its native one picosecond to 30-200 picoseconds in length, thus reducing the peak intensity of the micropulse down to 1/200th of the original intensity, while the macropulse energy remains unchanged.
Two basic metrics were studied: the ablation threshold on water and mouse dermis and the ablation crater depth on gelatin and mouse dermis. These metrics were employed at 6.45 and 6.1 microns in wavelength for 1, 100, and 200 picoseconds in micropulse duration. In addition, bright-field imaging was used to compare the ablation dynamic between 1 ps and 200 ps micropulses on water at 6.1 and 6.45 microns. The effect of changing the micropulse duration was also studied on the ablation of mouse dermis for histological analysis. Craters (500 micron diameter) were created with 25 pulses at three times the ablation threshold as determined for mouse dermis within 8 hours of removal. Three rows of twenty craters were created on each piece of mouse dermis for a given parameter set. The native one picosecond micropulse and 200 picosecond stretched micropulse were compared at 6.1 and 6.45 microns in wavelength. There was no difference seen between the native 1 ps micropulse and the stretched micropulse durations with respect to the ablation threshold, efficiency, dynamics, and thermal damage.
The goal of this study was to investigate a Q-switched Er:YAG pumped ZGP crystal Optical Parametric Oscillator (OPO) as a potential alternative source to the Mark-III Free Electron Laser (FEL) for delivering 6.45 micron light for clinical applications. In addition, this research increased the understanding of the role of the unique pulse structure of the FEL with respect to the ablation of soft tissue at 6.45 microns, which has been shown to ablate with very minimal collateral damage (<40 microns).
The OPO operates from 6-8 microns in wavelength with a 100 ns pulse. Up to 250 micro-joules per pulse can be obtained with this laser. This provides up to three times the threshold energy for ablation given a diffraction limited spot of ~60 microns in diameter. The ablation threshold was determined using PROBIT analysis of 100 pulses on water at 6.1 and 6.45 microns in wavelength. The ablated crater depth was also measured on 90% w/w gelatin at both wavelengths for craters made with between 5 and 500 pulses.
The results obtained with the OPO were then compared with a Mark-III FEL with a similar spotsize (~90 microns) to determine if there were any differences due to the unique pulse structure of the FEL, which consists of a 2.85 GHz train of picosecond pulses within a five microsecond envelope. The results showed no difference with respect to the ablation threshold; while the ablated crater depth was reduced for the FEL pulse for equivalent parameters. In addition, bright-field imaging was performed at three times the ablation threshold for both lasers and will be presented.
Pulsed mid-infrared (6.45 μm) radiation has been shown to cut soft tissue with minimal collateral damage (<40 mm); however, the mechanism of ablation has not been elucidated to date. The goal of this research was to examine the role of the unique pulse structure of the Vanderbilt Mark-III FEL and its role in the efficient ablation of soft tissue with minimal collateral damage. The pulse structure consists of a 2.865 GHz train of one picosecond micropulses within a 4-5 μs macropulse envelope operated between 2 and 30 Hz. The effect of the picosecond micropulses was examined by running the native FEL pulse structure through a pulse stretcher in order to increase the micropulse length from 1 picosecond up to 100 picoseconds. This allowed us to determine whether or not the picosecond train of micropulses played any role in the ablation process. The pulse stretcher was varied between 1, 30, 60, and 100 picoseconds. The ablation threshold was determined for water and mouse dermis for each micropulse length using PROBIT analysis of 100 individual observations of the macropulse. The results of the analysis showed no statistical difference between 1 and 100 picoseconds.
The ablation efficiency was also measured on 90% w/w gelatin and mouse dermis for the different micropulse lengths. Multiple ablation craters were made by varying the number of pulses delivered between 5 and 500. The ablated crater depth was measured using OCT. No significant difference was observed between 1 and 60 picoseconds; however, the 100 picosecond micropulse did show a reduction in the efficiency of ablation. We have shown that the effect of micropulse duration of the FEL on the ablation process is negligible between 1 and 100 picoseconds. Further analysis is needed beyond 100 picoseconds.
A gas discharge strontium vapor laser has been shown to operate with up to 90% of its light emitted at 6.45 μm. We have investigated the use of this laser as a potential stand-alone, tabletop alternative to the FEL for ablation of soft tissue. This custom-made laser currently delivers up to 2.4 watts of average power at 13 kHz pulse repetition rate (range 5-20 kHz). Despite a poor spatial beam profile the laser has been shown to ablate both water and soft tissue. However, current pulse energies (< 185 μJ) are insufficient for single pulse ablation even when focused to the smallest possible spot size (130 μm). Instead, the high pulse repetition rate causes the ablation to occur in a quasi CW manner. The dynamics of ablation studied by pump-probe (Schlieren) imaging and macroscopic white light imaging showed micro-explosions but at a rate well below the pulse repetition frequency. Histological analysis of ablation craters in bovine muscle exhibited significant collateral thermal damage, consistent with the high pulse frequency, thermal superposition and heat diffusion. Efforts to increase the pulse energy in order to achieve the threshold for pulse-to-pulse ablation are ongoing and will be discussed.
The pulse train from a Mark III FEL tuned to a wavelength of 6.45 microns has been shown to be efficient at ablating soft tissue with minimal collateral damage. This laser has a unique pulse structure consisting of a train of 1ps micropulses spaced 350ps apart, which is maintained for 4-5 microseconds (the macropulse) and is repeated at 1-30Hz. We are investigating the role of the pulse structure in the ablation mechanism. In order to determine the importance of non-linear effects potentially induced by the high peak power of the micropulses, we are using a grating pulse stretcher optimized for 6.45 microns to vary the micropulse duration while maintaining the macropulse duration and micropulse frequency. The technique allows use of the same pulse energy and average power with widely variable peak power. Ablation thresholds were measured using PROB-IT analysis and crater depths were measured using OCT imaging. In water, gelatin, and mouse dermis, we have found no statistically significant difference in the ablation threshold of pulses having widths of 1, 30, 60, and 100ps. The measured ablation efficiency of mouse dermis also showed no significant difference over the same range of pulse widths. This data suggests that the ablation characteristics obtained with the FEL at 6.45 microns are independent of the micropulse duration and do not rely on the high peak power of the FEL pulse train.
Assessment of laser tissue damage is not complete without an investigation into the cellular effects that are induced. In the past, tissue damage was quantified by such macroscopically visual results as tissue mass removal, carbonization, and melting. In this research, we used heat shock protein (hsp70) transcription, to track cellular response to laser injury. A stable cell line was generated containing the luciferase reporter gene attached to the heat shock protein (Hsp70) promoter. After thermal injury with a Holmium:YAG pulsed laser (wavelength= 2.1 μm, pulsetime = 250 μs, 30 pulses, 3 Hz), luciferase is produced upon hsp70 activation and emits bioluminescence at 563 nm. The luminescence was quantified with a liquid nitrogen cooled CCD camera. A minimum pulse energy (65 mJ/pulse, 2.0 mJ/mm2) was needed to activate the hsp70 response and a higher energy (103 mJ/pulse, 3.2 mJ/mm2) was associated with a reduction in hsp70 response. Bioluminescence levels correlated well to actual hsp70 protein concentrations as determined by ELISA assay. Photon counts were normalized to the percentage of live cells by means of a flow cytometry cell viability assay. The hsp70 response followed an Arrhenius relationship in nature when constant temperature water bath and constant area laser experiments were carried out.
The Er:YAG laser (λ=2.94μm) is an effective tool in vitreo-retinal surgery. Pulsed mid-infrared (λ=6.45μm) radiation from the Free Electron Laser has been touted as a potentially superior cutting tool. To date, use of this laser has been limited to applications in an air environment. The goal of this study was: 1) determine feasibility of fiberoptic delivery of λ= 6.45μm using silverhalide fibers (d=700μm); 2) use infrared transparent vitreous substitute (perfluorodecalin) to allow non-contact ablation of the retina at λ= 6.45μm. Fiber damage threshold=7.8J/cm2 (0.54GW/cm2) while transmission loss=0.54dB/m, allowing supra-ablative radiant exposures to the target. FTIR measurements of perfluorodecalin at λ=6.45μm yielded μa=3 mm-1. Pump-probe imaging of ablation of a tissue-phantom through perfluorodecalin showed feasibility of non-contact ablation at λ=6.45μm. Ablation of the retinal membranes of enucleated pig eyes was carried out under perfluorodecalin (2 Hz, 1.3 J/cm2). Each eye was cut along its equator to expose the retina. Vitreous was replaced by perfluorodecalin and laser radiation was delivered to the retina via the silverhalide fiber. The eye was rotated (at 2 rpm) to create an ablation circle around the central axis of the retina. Histological analysis of the retina in a limited number of eyes shows that retina ablation using this method is feasible and can be accomplished with minimal collateral damage. Remote structures are shielded, as the radiation exposure falls below the ablation threshold owing non-negible absorption of perfluorodecalin at λ=6.45μm. This may optimize efficacy and safetly of laser-based vitreoretinal surgery.
The effects of wavelength on infrared (IR) laser ablation with a free electron laser were studied by analyzing the acoustic signals produced during ablation of gelatin and tissue samples. The acoustic signals resulting from surface ablation of the samples were recorded with a piezoelectric microphone and the acoustic energy contained in the signal was calculated for samples of varying mechanical strength. Gelatin samples of different mechanical strengths were made by varying the water concentration in the gels to 70% and 90% wt./vol. The gels were irradiated at wavelengths of λ = 2.94, 2.80, and 6.45 μm with the measured acoustic energy normalized to the incident laser pulse energy. The results showed that while there was a statistically significant difference in the average acoustic energy measured for both concentrations of gelatin at λ = 2.94 and 2.80 μm, there was no difference in the average acoustic energy for the two concentrations of gelatin at λ = 6.45 micrometers . This supports the model of mechanical weakening of the sample by breaking the amide II molecular bonds in proteins, originally proposed by Edwards et al.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.