KEYWORDS: Telescopes, Spectrographs, Calibration, Fabry Perot interferometers, Observatories, Control systems, Sensors, Control software, Equipment, Domes
MARVEL is a new facility at the Roque de los Muchachos Observatory (La Palma) which comprises an array of four 0.8m telescopes, each feeding via fibre link into a single high-resolution spectrograph. The facility will provide dedicated target vetting and follow-up capability to support large exoplanet surveys through radial velocity measurements with precision at the metre-per-second level. The observatory site, with four new domes and a standalone stabilised spectrograph building, will soon be complete and ready for hardware installation and commissioning. Here we present an overview of the facility and a status update on several component subsystems: the telescope hardware, control software, and scheduling software; the fibre injection units at each telescope; the optical and mechanical design and tolerances of the spectrograph and vacuum vessel; the calibration system hardware and calibration strategies; and the progress in development of the instrument’s data reduction pipeline.
We describe the motivation, design, and early results for our 42-night, 125 star Subaru/SCExAO direct imaging survey for planets around accelerating stars. Unlike prior large surveys, ours focuses only on stars showing evidence for an astrometric acceleration plausibly due to the dynamical pull of an unseen planet or brown dwarf. Our program is motivated by results from a recent pilot program that found the first planet jointly discovered from direct imaging and astrometry and resulted in a planet and brown dwarf discovery rate substantially higher than previous unbiased surveys like GPIES. The first preliminary results from our program reveal multiple new companions; discovered planets and brown dwarfs can be further characterized with follow-up data, including higher-resolution spectra. Finally, we describe the critical role this program plays in supporting the Roman Space Telescope Coronagraphic Instrument, providing a currently-missing list of targets suitable for the CGI technological demonstration without which the CGI tech demo risks failure.
The Large Interferometer For Exoplanets (LIFE) is a proposed space mission that enables the spectral characterization of the thermal emission of exoplanets in the solar neighborhood. The mission is designed to search for global atmospheric biosignatures on dozens of temperate terrestrial exoplanets and it will naturally investigate the diversity of other worlds. Here, we review the status of the mission concept, discuss the key mission parameters, and outline the trade-offs related to the mission’s architecture. In preparation for an upcoming concept study, we define a mission baseline based on a free-formation flying constellation of a double Bracewell nulling interferometer that consists of 4 collectors and a central beam-combiner spacecraft. The interferometric baselines are between 10–600m, and the estimated diameters of the collectors are at least 2m (but will depend on the total achievable instrument throughput). The spectral required wavelength range is 6–16μm (with a goal of 4–18.5μm), hence cryogenic temperatures are needed both for the collectors and the beam combiners. One of the key challenges is the required deep, stable, and broad-band nulling performance while maintaining a high system throughput for the planet signal. Among many ongoing or needed technology development activities, the demonstration of the measurement principle under cryogenic conditions is fundamentally important for LIFE.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.