This work discusses optical fiber sensors based on lossy-mode resonance (LMR) effect and their potential for simultaneous sensing in multiple domains, i.e., optical and electrochemical. As electrically conductive materials able to guide lossy modes, two doped tin oxides, i.e., fluorine doped tin oxide (FTO) and indium tin oxide (ITO) thin films were employed. Since the ITO-LMR sensor has already been discussed broader, this work focuses on properties of the FTO-LMR sensor and brief comparison of devices based on the two materials. In optical domain the sensitivity to surrounding medium refractive index was determined by immersing the sensors in solutions of different refractive index. Both the sensors showed sensitivity of 300 nm/RIU in a refractive index range of approx. 1.33-1.39 RIU. Electrochemical measurements were performed in 0.01 M phosphate-buffered saline (PBS, pH 7.0) to identify the influence of the applied potential on the optical response of both sensors. In applied potential from -1.0 V to 1.0 V the FTO-LMR sensor reached LMR shift of 31.3 nm compared to 23.8 nm of the ITO-LMR one.
Label-free biosensing using optical long-period gratings (LPGs) induced in optical fiber and coated with biological compound enables for detection and monitoring the kinetics of reactions taking places on the sensor’s surface. The labelfree detection effect for the LPG biosensor working near the dispersion turning point (DTP) of higher order cladding modes can be observed as resonance wavelength shift induced by binding of biomolecules to fiber surface. In this study we analyzed shift of the resonance wavelength for LPG after its functionalization with DNA layer and during DNA hybridization. It has seen found that the LPG is able to be functionalized with DNA oligonucleotide, acting as a probe and after the functionalization can selectively bind specific complementary DNA oligonucleotides in a very low concentration. DNA-coated LPG can be used as a probe capturing specific DNA sequences with wide ranges of concentrations from 0.1 to 10 pM. Hybridization of the DNA on the fiber surface has also been verified with Midorii Green florescent marker.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.