We conducted the evaluation testing of the InGaAs image sensor for the future JASMINE mission. The InGaAs image sensor, which is manufactured by Hamamatsu Photonics K.K., has been updated with substrate removal to avoid fluorescence caused by cosmic rays. We introduce preliminary performance reports of the 128×128 arrayed small prototype at 170K, assuming space use, including dark current and relative quantum efficiency in the near-infrared. Notably, we confirmed that fluorescence is significantly mitigated with an exposure of about 10 minutes. Furthermore, the relative quantum efficiency in the visible wavelength is enhanced compared to previous evaluations in the literature. These results provide a good configuration for the test of the sensor for deployment and play an important role in the future development of infrared astronomical instruments.
To investigate the evolution of our Galaxy, we plan to measure the distances and motions of stars in the Galactic center region. Additionally, our goal is to detect planets within the habitable zone around mid-M-type stars using transit phenomena. To achieve these objectives, we initiated the Japan Astrometry Satellite Mission for Infrared Exploration (JASMINE) project, targeting a 40 microarcsecond annual parallax measurement and aiming photometric accuracy of less than 0.3% for mid-M-type stars. A conceptual study of the observation instrument was conducted. As a result, the telescope is designed with high stability in orbit through carefully chosen materials and a special thermal design. A three-year operation is planned to collect sufficient data for annual parallax measurements. The telescope, with a diameter of 36 cm, covers wavelengths from 1.0 to 1.6 microns using InGaAs detectors. This paper will detail how instrument parameters were selected based on scientific objectives.
Martian Moons eXplorer (MMX) is a sample-return mission of Phobos, the larger moon of Mars. To achieve the mission, a high-resolution 3D model of Phobos is essential, which requires a large number of high-resolution images to be sent back to Earth with enough quality before carrying out the landing activity. To realize this, the data transfer bandwidth is the bottleneck, and we adopt CCSDS 122.0-B-1 image compression, a variation of data compression based on the DWT method. This method allows us to select only one output quality for one image compression. On the other hand, the data transfer strategy shall be to transfer minimum-quality images first for quick looks and full-quality ones later. To realize this with the least computing power, we modified the method to output a low-quality full image and two supplemental data sets to better quality. This work is based on the CCSDS 122.0-B-1 implementation by a group of the University of Nebraska Lincoln.
The X-Ray Imaging and Spectroscopy Mission (XRISM) project at JAXA officially started in 2018. Following the development of onboard components, the proto-flight test was conducted from 2021 to 2023 at JAXA Tsukuba Space Center. The spacecraft was launched from JAXA Tanegashima Space Center on September 7, 2023 (JST), and onboard components, including the science instruments, were activated during the in-orbit commissioning phase. Following the previous report in 2020, we report the spacecraft ground tests, the launch operation, in-orbit operations, and the status and plan of initial and subsequent guest observations.
XRISM (X-Ray Imaging and Spectroscopy Mission) is an astronomical satellite with the capability of highresolution spectroscopy with the X-ray microcalorimeter, Resolve, and wide field-of-view imaging with the CCD camera, Xtend. The Xtend consists of the mirror assembly (XMA: X-ray Mirror Assembly) and detector (SXI: Soft X-ray Imager). The components of SXI include CCDs, analog and digital electronics, and a mechanical cooler. After the successful launch on September 6th, 2023 (UT) and subsequent critical operations, the mission instruments were turned on and set up. The CCDs have been kept at the designed operating temperature of −110°C after the electronics and cooling system were successfully set up. During the initial operation phase, which continued for more than a month after the critical operations, we verified the observation procedure, stability of the cooling system, all the observation options with different imaging areas and/or timing resolutions, and operations for protection against South Atlantic Anomaly. We optimized the operation procedure and observation parameters including the cooler settings, imaging areas for the specific modes with higher timing resolutions, and event selection algorithm. We summarize our policy and procedure of the initial operations for SXI. We also report on a couple of issues we faced during the initial operations and lessons learned from them.
XRISM (X-ray Imaging and Spectroscopy Mission) is an X-ray astronomy satellite developed in collaboration with JAXA, NASA and ESA. It successfully launched on Sept. 7, 2023. Two complementary X-ray telescopes, Resolve and Xtend are on-board XRISM. Resolve uses the pixelized X-ray micro calorimeter developed by NASA/GSFC and has very high energy resolution of 5 eV. On the other hand, Xtend uses an X-ray CCD camera as its focal plane detector which has high spatial resolution and a wide field of view. We evaluated the performance of the X-ray Mirror Assembly (XMA) for Xtend using data observed during the commissioning and PV phases of XRISM. To verify the imaging performance, the Point Spread Functions (PSF) generated from the observations of NGC 4151 and PDS 456 were compared with the ground-calibration results. The results show that the imaging performance of Xtend-XMA is not significantly different from that of the ground calibration, and that it meet the requirement. The effective area was verified by comparing the results of simultaneous observations of 3C 273 by XRISM and four X-ray astronomy satellites (Chandra, XMM-Newton, NuSTAR, and Swift). The results of the fitting of the X-ray spectrum of Xtend show no significant difference from the results of other satellites, suggesting the effective area used for fitting is correct. The on-axis position on the detector was estimated from the intensity of the Abell 2029 observations at four off-axis angles. The on-axis is about 40 arcsec away from the aim point, and the decrease in effective area at the aim point is less than 1%. Stray light observations of the Crab Nebula at 60 arcmin off-axis were obtained at two different satellite roll angles. The stray light intensity obtained at each roll angle was significantly different, verifying the dependence of the stray light on the roll angle.
Xtend is one of the two telescopes onboard the X-ray imaging and spectroscopy mission (XRISM), which was launched on September 7th, 2023. Xtend comprises the Soft X-ray Imager (SXI), an X-ray CCD camera, and the X-ray Mirror Assembly (XMA), a thin-foil-nested conically approximated Wolter-I optics. A large field of view of 38′ × 38′ over the energy range from 0.4 to 13 keV is realized by the combination of the SXI and XMA with a focal length of 5.6 m. The SXI employs four P-channel, back-illuminated type CCDs with a thick depletion layer of 200 μm. The four CCD chips are arranged in a 2×2 grid and cooled down to −110°C with a single-stage Stirling cooler. Before the launch of XRISM, we conducted a month-long spacecraft thermal vacuum test. The performance verification of the SXI was successfully carried out in a course of multiple thermal cycles of the spacecraft. About a month after the launch of XRISM, the SXI was carefully activated and the soundness of its functionality was checked by a step-by-step process. Commissioning observations followed the initial operation. We here present pre- and post-launch results verifying the Xtend performance. All the in-orbit performances are consistent with those measured on ground and satisfy the mission requirement. Extensive calibration studies are ongoing.
Xtend is a soft x-ray imaging telescope developed for the x-ray imaging and spectroscopy mission (XRISM). XRISM is scheduled to be launched in the Japanese fiscal year 2022. Xtend consists of the soft x-ray imager (SXI), an x-ray CCD camera, and the x-ray mirror assembly (XMA), a thin-foil-nested conically approximated Wolter-I optics. The SXI uses the P-channel, back-illuminated type CCD with an imaging area size of 31mm on a side. The four CCD chips are arranged in a 2×2 grid and can be cooled down to −120 °C with a single-stage Stirling cooler. The XMA nests thin aluminum foils coated with gold in a confocal way with an outer diameter of 45 cm. A pre-collimator is installed in front of the x-ray mirror for the reduction of the stray light. Combining the SXI and XMA with a focal length of 5.6m, a field of view of 38′ × 38′ over the energy range from 0.4 to 13 keV is realized. We have completed the fabrication of the flight model of both SXI and XMA. The performance verification has been successfully conducted in a series of sub-system level tests. We also carried out on-ground calibration measurements and the data analysis is ongoing.
We report current status of developing Soft X-ray Imager (SXI), the X-ray CCD camera onboard X-Ray Imaging and Spectroscopy Mission (XRISM). Four flight model (FM) CCDs have been selected considering several items including energy resolution at 5.9keV, CTI, dark current, etc. We have also completed calibration campaign for all the FM CCDs. Initial analyses show that the response function for monochromatic X-rays is basically the same as that of Hitomi CCDs. The focal plane including the single-stage Stirling cooler has been assembled. Production of key parts in SXI sensor body such as contamination blocking filter and onboard calibration source has been finished and they are waiting for assemble. The digitized signals of the CCD are corrected step by step before conversion to X-ray energy. We are preparing calibration database for the correction such as CTI, gain, and line redistribution function.
The X-Ray Imaging and Spectroscopy Mission (XRISM) is the successor to the 2016 Hitomi mission that ended prematurely. Like Hitomi, the primary science goals are to examine astrophysical problems with precise highresolution X-ray spectroscopy. XRISM promises to discover new horizons in X-ray astronomy. XRISM carries a 6 x 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly and a co-aligned X-ray CCD camera that covers the same energy band over a large field of view. XRISM utilizes Hitomi heritage, but all designs were reviewed. The attitude and orbit control system were improved in hardware and software. The number of star sensors were increased from two to three to improve coverage and robustness in onboard attitude determination and to obtain a wider field of view sun sensor. The fault detection, isolation, and reconfiguration (FDIR) system was carefully examined and reconfigured. Together with a planned increase of ground support stations, the survivability of the spacecraft is significantly improved.
X-ray Astronomy Recovery Mission (XARM) scheduled to be launched in early 2020’s carries two soft X-ray telescopes. One is Resolve consisting of a soft X-ray mirror and a micro calorimeter array, and the other is Soft X-ray Imaging Telescope (Xtend), a combination of an X-ray mirror assembly (XMA) and an X-ray CCD camera (SXI). Xtend covers a field of view (FOV) of 38′ × 38′ , much larger than that of Resolve (3′ × 3 ′ ) with moderate energy resolution in the energy band from 0.4 keV to 13 keV, which is similar to that of Resolve (from 0.3 keV to 12 keV). Simultaneous observations of both telescopes provide complimentary data of X-ray sources in their FOV. In particular, monitoring X-ray sources outside the Resolve FOV but inside the Xtend FOV is important to enhance the reliability of super high resolution spectra obtained with Resolve. Xtend is also expected to be one of the best instruments for low surface brightness X-ray emissions with its low non X-ray background level, which is comparable to that of Suzaku XIS. The design of Xtend is almost identical to those of Soft X-ray Telescope (SXT) and Soft X-ray Imager (SXI) both on board the Hitomi satellite. However, several mandatory updates are included. Updates for the CCD chips are verified with experiment using test CCD chips before finalizing the design of the flight model CCD. Fabrication of the foils for XMA has started, and flight model production of the SXI is almost ready.
The ASTRO-H mission was designed and developed through an international collaboration of JAXA, NASA, ESA, and the CSA. It was successfully launched on February 17, 2016, and then named Hitomi. During the in-orbit verification phase, the on-board observational instruments functioned as expected. The intricate coolant and refrigeration systems for soft X-ray spectrometer (SXS, a quantum micro-calorimeter) and soft X-ray imager (SXI, an X-ray CCD) also functioned as expected. However, on March 26, 2016, operations were prematurely terminated by a series of abnormal events and mishaps triggered by the attitude control system. These errors led to a fatal event: the loss of the solar panels on the Hitomi mission. The X-ray Astronomy Recovery Mission (or, XARM) is proposed to regain the key scientific advances anticipated by the international collaboration behind Hitomi. XARM will recover this science in the shortest time possible by focusing on one of the main science goals of Hitomi,“Resolving astrophysical problems by precise high-resolution X-ray spectroscopy”.1 This decision was reached after evaluating the performance of the instruments aboard Hitomi and the mission’s initial scientific results, and considering the landscape of planned international X-ray astrophysics missions in 2020’s and 2030’s. Hitomi opened the door to high-resolution spectroscopy in the X-ray universe. It revealed a number of discrepancies between new observational results and prior theoretical predictions. Yet, the resolution pioneered by Hitomi is also the key to answering these and other fundamental questions. The high spectral resolution realized by XARM will not offer mere refinements; rather, it will enable qualitative leaps in astrophysics and plasma physics. XARM has therefore been given a broad scientific charge: “Revealing material circulation and energy transfer in cosmic plasmas and elucidating evolution of cosmic structures and objects”. To fulfill this charge, four categories of science objectives that were defined for Hitomi will also be pursued by XARM; these include (1) Structure formation of the Universe and evolution of clusters of galaxies; (2) Circulation history of baryonic matters in the Universe; (3) Transport and circulation of energy in the Universe; (4) New science with unprecedented high resolution X-ray spectroscopy. In order to achieve these scientific objectives, XARM will carry a 6 × 6 pixelized X-ray micro-calorimeter on the focal plane of an X-ray mirror assembly, and an aligned X-ray CCD camera covering the same energy band and a wider field of view. This paper introduces the science objectives, mission concept, and observing plan of XARM.
The Hitomi (ASTRO-H) mission is the sixth Japanese x-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft x-rays to gamma rays. After a successful launch on February 17, 2016, the spacecraft lost its function on March 26, 2016, but the commissioning phase for about a month provided valuable information on the onboard instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.
The Soft X-ray Imager (SXI) is an imaging spectrometer using charge-coupled devices (CCDs) aboard the Hitomi x-ray observatory. The SXI sensor has four CCDs with an imaging area size of 31 mm×31 mm arranged in a 2×2 array. Combined with the x-ray mirror, the Soft X-ray Telescope, the SXI detects x-rays between 0.4 and 12 keV and covers a 38′×38′ field of view. The CCDs are P-channel fully depleted, back-illumination type with a depletion layer thickness of 200 μm. Low operation temperature down to −120°C as well as charge injection is employed to reduce the charge transfer inefficiency (CTI) of the CCDs. The functionality and performance of the SXI are verified in on-ground tests. The energy resolution measured is 161 to 170 eV in full width at half maximum for 5.9-keV x-rays. In the tests, we found that the CTI of some regions is significantly higher. A method is developed to properly treat the position-dependent CTI. Another problem we found is pinholes in the Al coating on the incident surface of the CCDs for optical light blocking. The Al thickness of the contamination blocking filter is increased to sufficiently block optical light.
Fast timing capability in x-ray observation of astrophysical objects is one of the key properties for the ASTRO-H (Hitomi) mission. Absolute timing accuracies of 350 or 35 μs are required to achieve nominal scientific goals or to study fast variabilities of specific sources. The satellite carries a GPS receiver to obtain accurate time information, which is distributed from the central onboard computer through the large and complex SpaceWire network. The details of the time system on the hardware and software design are described. In the distribution of the time information, the propagation delays and jitters affect the timing accuracy. Six other items identified within the timing system will also contribute to absolute time error. These error items have been measured and checked on ground to ensure the time error budgets meet the mission requirements. The overall timing performance in combination with hardware performance, software algorithm, and the orbital determination accuracies, etc. under nominal conditions satisfies the mission requirements of 35 μs. This work demonstrates key points for space-use instruments in hardware and software designs and calibration measurements for fine timing accuracy on the order of microseconds for midsized satellites using the SpaceWire (IEEE1355) network.
The Hitomi (ASTRO-H) mission is the sixth Japanese X-ray astronomy satellite developed by a large international collaboration, including Japan, USA, Canada, and Europe. The mission aimed to provide the highest energy resolution ever achieved at E > 2 keV, using a microcalorimeter instrument, and to cover a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. After a successful launch on 2016 February 17, the spacecraft lost its function on 2016 March 26, but the commissioning phase for about a month provided valuable information on the on-board instruments and the spacecraft system, including astrophysical results obtained from first light observations. The paper describes the Hitomi (ASTRO-H) mission, its capabilities, the initial operation, and the instruments/spacecraft performances confirmed during the commissioning operations for about a month.
We report here the performance of the SXI on ASTRO-H that was started its operation from March,02 2016. The SXI consists of 4 CCDs that cover 38' X 38' sky region. They are P-channel back-illumination type CCD with a depletion layer of 200 μm. Charge injection (CI) method is applied from its beginning of the mission. Two single stage sterling coolers are equipped with the SXI while one of them has enough power to cool the CCD to -110°C. There are two issues in the SXI performance: one is a light-leak and the other is a cosmic-ray echo. The light-leak is due to the fact that the day-Earth irradiates visible lights onto the SXI body through holes in the satellite base plate. It can be avoided by selecting targets not on the anti-day-Earth direction. The cosmic-ray echo is due to the improper parameter values that is fixed by revising them with which the cosmic-ray echo does not affect the image. Using the results of RXJ1856.5-3754, we confirm that the possible contaminants on the CCD is well within our expectation.
The Soft X-ray Imager (SXI) is an X-ray CCD camera onboard the ASTRO-H X-ray observatory. The CCD chip used is a P-channel back-illuminated type, and has a 200-µm thick depletion layer, with which the SXI covers the energy range between 0.4 keV and 12 keV. Its imaging area has a size of 31 mm x 31 mm. We arrange four of the CCD chips in a 2 by 2 grid so that we can cover a large field-of-view of 38’ x 38’. We cool the CCDs to -120 °C with a single-stage Stirling cooler. As was done for the CCD camera of the Suzaku satellite, XIS, artificial charges are injected to selected rows in order to recover charge transfer inefficiency due to radiation damage caused by in-orbit cosmic rays. We completed fabrication of flight models of the SXI and installed them into the satellite. We verified the performance of the SXI in a series of satellite tests. On-ground calibrations were also carried out and detailed studies are ongoing.
X-ray CCD operated onboard satellite are contaminated by outgas from organic material used in satellites. This contamination causes a significant reduction in the detection sensitivity of X-ray detectors.
In order to prevent such contamination to the Back-Illuminated CCD (BI-CCD) of the Soft X-ray Imager
(SXI) onboard ASTRO-H, we have developed a Contamination Blocking Filter (CBF), which consists of ~30nm thick Aluminum and ~200nm thick Polyimide. The CBF is be placed on the top of the CCD camera hood and is required to have a high X-ray transmission in order to take advantage of the high detection efficiency of BI-CCD.
We measured the X-ray transmission of three flight candidates of the CBF last October at the SPring-8 and obtained the X-ray transmission of three CBFs in the soft X-ray energy from 0.2 to 1.8 keV which covers the absorption edges around C-K, N-K, O-K, and Al-K including X-ray absorption fine structure (XAFS). In these measurements, we found three CBFs have high X-ray transmission below 2ke V, e.g. ~70% at around 0.5 keV, and determined the thickness of Al and Polyimide to be 220 nm and ~50 nm, respectively. We will calculate the response function of SXI including these results.
Soft X-ray Imager (SXI) is a CCD camera onboard the ASTRO-H satellite which is scheduled to be launched in 2015. The SXI camera contains four CCD chips, each with an imaging area of 31mm x 31 mm, arrayed in mosaic, covering the whole FOV area of 38′ x 38′. The CCDs are a P-channel back-illuminated (BI) type with a depletion layer thickness of 200 _m. High QE of 77% at 10 keV expected for this device is an advantage to cover an overlapping energy band with the Hard X-ray Imager (HXI) onboard ASTRO-H. Most of the flight components of the SXI system are completed until the end of 2013 and assembled, and an end-to-end test is performed. Basic performance is verified to meet the requirements. Similar performance is confirmed in the first integration test of the satellite performed in March to June 2014, in which the energy resolution at 5.9 keV of 160 eV is obtained. In parallel to these activities, calibrations using engineering model CCDs are performed, including QE, transmission of a filter, linearity, and response profiles.
A formation flight astronomical survey telescope (FFAST) is a new project that will cover a large sky area in hard X-ray. In particular, it will focus on the energy range up to 80keV. It consists of two small satellites that will go in a formation flight. One is an X-ray telescope satellite carrying a super mirror, and the other is a detector satellite carrying an SDCCD. Two satellites are put into a low earth orbit in keeping the separation of 12m. This will survey a large sky area at hard X-ray region to study the evolution of the universe.
X-ray CCDs are widely used as the focal plane detectors of the X-ray telescopes. Among them, backside illuminated CCDs with a deep depletion layer are preferred because of their high quantum efficiency in both soft and hard X-ray bands. However, they tend to have poorer energy resolution and higher background due to the relatively large charge diffusion. We carried out simple experiments to apply a magnetic field of 0.25 T or 0.4 T to the CCD, which is expected to suppress the charge diffusion very slightly and to bring subtle improvement in the performance of the CCD. We found unexpectedly that grade branching ratios of Grade 3 and Grade 4, both are horizontal split events, symmetrically changed depending on the direction of the applied magnetic field. Although the cause of the change is not understand yet, it clearly demonstrate that the charge cloud in the CCD is affected by the externally applied magnetic field. We also found a decrease of Grade 7 only in the experiment 2. We consider this may be caused by the supress of the charge diffusion by the magnetic field, although other possibilities can not be excluded. No significant improvement was detected in the energy resolution. We could show with these experiments that the charge cloud in the CCD may be controlled by the externally applied magnetic field. Magnetic field may become useful tool in future to improve the performance of CCDs.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions developed by the Institute of Space and Astronautical Science (ISAS), with a planned launch in 2015. The ASTRO-H mission is equipped with a suite of sensitive instruments with the highest energy resolution ever achieved at E > 3 keV and a wide energy range spanning four decades in energy from soft X-rays to gamma-rays. The simultaneous broad band pass, coupled with the high spectral resolution of ΔE ≤ 7 eV of the micro-calorimeter, will enable a wide variety of important science themes to be pursued. ASTRO-H is expected to provide breakthrough results in scientific areas as diverse as the large-scale structure of the Universe and its evolution, the behavior of matter in the gravitational strong field regime, the physical conditions in sites of cosmic-ray acceleration, and the distribution of dark matter in galaxy clusters at different redshifts.
The Soft X-ray Imager, SXI, is an X-ray CCD camera onboard the ASTRO-H satellite to be launched in 2015. ASTRO-H will carry two types of soft X-ray detector. The X-ray calorimeter, SXS, has an excellent energy resolution with a narrow field of view while the SXI has a medium energy resolution with a large field of view, 38′ square. We employ 4 CCDs of P-channel type with a depletion layer of 200 μm. Having passed the CDR, we assemble the FM so that we can join the final assembly. We present here the SXI status and its expected performance in orbit.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated
by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the highenergy
universe via a suite of four instruments, covering a very wide energy range, from 0.3 keV to 600 keV.
These instruments include a high-resolution, high-throughput spectrometer sensitive over 0.3–12 keV with
high spectral resolution of ΔE ≦ 7 eV, enabled by a micro-calorimeter array located in the focal plane of
thin-foil X-ray optics; hard X-ray imaging spectrometers covering 5–80 keV, located in the focal plane of
multilayer-coated, focusing hard X-ray mirrors; a wide-field imaging spectrometer sensitive over 0.4–12 keV,
with an X-ray CCD camera in the focal plane of a soft X-ray telescope; and a non-focusing Compton-camera
type soft gamma-ray detector, sensitive in the 40–600 keV band. The simultaneous broad bandpass, coupled
with high spectral resolution, will enable the pursuit of a wide variety of important science themes.
We are developing an ASTRO-H data analysis framework with the Geant4-based Monte Carlo simulation core,
and numerical models of the on-orbit environmental radiation and full-satellite mass structure. The framework
uses not only Geant4 but also a traditional X-ray mirror ray-tracing simulator, and a file format compatible
with the SimX simulator for input and output of celestial body information. The data exchange between the
framework and the external software is based on FITS files, which makes it easy to record and trace the internal
steps of the whole simulation framework.
A “formation flight astronomical survey telescope” (FFAST) is a new project that will cover a large sky area in hard X-ray. In particular, it will focus on the energy range up to 80 keV. It consists of two small satellites that will go in a formation flight. One is an X-ray telescope satellite carrying a “super mirror” and the other is a detector satellite carrying an SDCCD. Two satellites are put into a low earth orbit. They are in a formation flight with a separation of 20 m. Since two satellites are put into Keplerian orbit, the observation direction is moving the sky rather than pointing to a fixed direction. This project will survey a large sky area at hard X-ray region to study the evolution of the universe.
Soft X-ray Imager (SXI) is a CCD camera onboard the ASTRO-H satellite which is scheduled to be launched
in 2014. The SXI camera contains four CCD chips, each with an imaging area of 31mm×
31 mm, arrayed in
mosaic, which cover the whole FOV area of 38' ×
38'. The SXI CCDs are a P-channel back-illuminated (BI) type
with a depletion layer thickness of 200 μm. High QE of 77% at 10 keV expected for this device is an advantage
to cover an overlapping energy band with the Hard X-ray Imager (HXI) onboard ASTRO-H. Verification with
engineering model of the SXI has been performed since 2011. Flight model design was fixed and its fabrication
has started in 2012.
Soft X-ray Imager (SXI) is a CCD camera onboard the ASTRO-H satellite which is scheduled to be launched
in 2014. The SXI camera contains four CCD chips, each with an imaing aread of 31mmx31 mm, arrayed in
mosaic, which cover the whole FOV area of 38'x38'. The SXI CCD of which model name is HPK Pch-NeXT4
is a P-channel type, back-illuminated, fully depleted device with a thickness of 200μm. We have developed an
engineering model of the SXI camera body with coolers, and analog electronics for them. Combined with the
bread board digital electronics, we succeeded in operation the whole the SXI system. The CCDs are cooled down
to -120°C with this system, and X-rays from 55Fe sources are detected. Although optimization of the system is in
progress, the energy resolution of typical 200 eV and best 156 eV (FWHM) at 5.9 keV are obtained. The readout
noise is 10 e- to 15 e-, and to be improved its goal value of 5 e-. On-going function tests and environment tests
reveal some issues to be solved until the producntion of the SXI flight model in 2012.
We report on the development of the X-ray CCD for the soft X-ray imager (SXI) onboard ASTRO-H. SXI CCDs are
P-channel, back-illuminated type manufactured by Hamamatsu Photonics K. K.
Experiments with prototype CCD for the SXI shows the device has a depletion layer as thick as 200μm, high efficiency for hard X-rays.
By irradiating soft X-rays to the prototype CCD for the SXI.
At the same time, we found a significant low energy tail in the soft X-ray response of the SXI prototype CCD.
We thus made several small size CCD chips with different treatment in processing the surface layers.
CCDs with one of the surface layers treatment show a low energy tail of
which intensity is one order of magnitude smaller than that of the original SXI prototype CCD for 0.5keV X-ray incidence.
The same treatment will be applied to the flight model CCDs of the SXI.
We also performed experiments to inject charge with the SXI prototype CCD, which is needed to mitigate the radiation damage in the orbit.
We investigated the operation conditions of the charge injection.
Using the potential equilibration method, charges are injected in each column homogeneously,
though the amount of the charge must be larger than 20ke-.
We present the development of the data acquisition system for the X-ray CCD camera (SXI: Soft X-ray Imager)
onboard the ASTRO-H satellite. Two types of breadboard models (BBMs) of SXI electronics have been produced
to verify the functions of each circuit board and to establish the data acquisition system from CCD to SpaceWire
(SpW) I/F. Using BBM0, we verified the basic design of the CCD driver, function of the Δ∑-ADC, data
acquisition of the frame image, and stability of the SpW communication. We could demonstrate the energy
resolution of 164 eV (FWHM) at 5.9 keV. Using BBM1, we verified acquisition of the housekeeping information
and the frame images.
The joint JAXA/NASA ASTRO-H mission is the sixth in a series of highly successful X-ray missions initiated
by the Institute of Space and Astronautical Science (ISAS). ASTRO-H will investigate the physics of the
high-energy universe by performing high-resolution, high-throughput spectroscopy with moderate angular
resolution. ASTRO-H covers very wide energy range from 0.3 keV to 600 keV. ASTRO-H allows a combination
of wide band X-ray spectroscopy (5-80 keV) provided by multilayer coating, focusing hard X-ray
mirrors and hard X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3-12 keV)
provided by thin-foil X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD
camera as a focal plane detector for a soft X-ray telescope (0.4-12 keV) and a non-focusing soft gamma-ray
detector (40-600 keV) . The micro-calorimeter system is developed by an international collaboration led
by ISAS/JAXA and NASA. The simultaneous broad bandpass, coupled with high spectral resolution of
ΔE ~7 eV provided by the micro-calorimeter will enable a wide variety of important science themes to be
pursued.
We are developing an ASTRO-H data analysis framework with the Geant4-based Monte Carlo simulation core,
and numerical models of the on-orbit environmental radiation and full-satellite mass structure. In addition,
the framework also includes a mechanism to connect and control data processing modules that are developed
independently and data communication channels among them, which has been technically proven by simulations
and analysis of the Suzaku HXD, many other detectors and astrophysical issues.
We have developed a new back-illuminated (BI) CCD which has an Optical Blocking Layer (OBL) directly coating
its X-ray illumination surface with Aluminum-Polyimide-Aluminum instead of Optical Blocking Filter (OBF).
OBL is composed of a thin polyimide layer sandwiched by two Al layers. Polyimide and Al has a capability to
cut EUV and optical light, respectively. The X-ray CCD is affected by large doses of extreme ultraviolet (EUV)
radiation from Earth sun-lit atmosphere (airglow) in orbit as well as the optical light.
In order to evaluate the performance of the EUV-attenuating polyimide of the OBL, we measured the EUV
transmission of both the OBL and the OBF at energies between 15-72 eV by utilizing a beam line located
at the Photon Factory in High Energy Accelerator Research Organization (KEK-PF). We obtained the EUV
transmission to be 3% at 41 eV which is the same as the expected transmission from the designed thickness of
the polyimide layer. We also found no significant change of the EUV transmission of polyimide over the nine
month interval spanned by out two experiments.
We also measured the optical transmission of the OBL at wavelengths between 500-900Å to evaluate the
performance of the Al that attenuates optical light, and found the optical transmission to be less than 4×10-5.
We are designing an X-ray CCD camera (SXI) for ASTRO-H, including many new items. We have developed
the CCD, CCD-NeXT4, that is a P-channel type CCD. It has a thick depletion layer of 200μm with an imaging
area of 30mm square. Since it is back-illuminated, it has a good low energy response and is robust against the
impact of micro-meteorites. We will employ 4 chips to cover the area of 60mm square. A mechanical rather
than peltier cooler will be employed so that we can cool the CCD to -120°C. We will also introduce an analog
ASIC that is placed very close to the CCD. It performs well, having a similar noise level to that assembled by
using individual parts used on SUZAKU. We also employ a modulated X-ray source (MXS), that improves the
accuracy of the calibration. The SXI will have one of the largest SΩ among various satellites.
We studied how the configuration parameters of a CCD (pixel size and depletion layer thickness) affect the instrumental background of an X-ray CCD camera in the space environment through the Monte-Carlo simulation. X-ray detectors are in general sensitive not only to X-rays but also to charged particles. The latter produce pseudo-signal indistinguishable from that of X-rays, which is called instrumental background. It is essential to reduce the instrumental background for the observations of dim and diffuse X-ray sources, but the low background was not considered as a design goal of an X-ray CCD camera so far. We utilized the Monte-Carlo simulator, which could successfully reproduce the Suzaku XIS background, for the current analysis. We found that thicker depletion layer tends to increase the background except for the >5 keV band of the backside-illuminated CCD. On the other hand, pixel-size dependence was different between the frontside and backside illuminated CCDs. These results are interpreted in terms of the interaction of cosmic/X-rays with the CCD.
We are planning to have a "formation flight all sky telescope"~(FFAST) that will cover a large sky area in relatively high energy X-ray. In particular, it will focus on the energy range above 10 keV. It consists of two small satellites that will go in a formation flight. One is an X-ray telescope satellite and the other is a detector satellite. Two satellites will be simultaneously launched by a single rocket vehicle into a low earth orbit. They are in a formation flight with a separation of 20m±10cm. The observation direction is determined by the two satellites. Since two satellites are put into Keplerian orbit, the observation direction is scanning the sky rather than pointing to a fixed direction.
The X-ray telescope satellite carries one super-mirror covering the energy range up to 80 keV. The telescope is 45-cm diameter and its focal length is 20m. The telescope is a "super mirror" ~that has a multi-layer coating covering the energy range up to 80 keV. The effective area is about 500cm2 at low energy and 200cm2 at 70 keV. The mirror system is a thin foil mirror that is developing at Nagoya University that is being developed. The PSF of the mirror will be about 1-2 arcmin. The satellite is equipped with an attitude control system using momentum wheel. It will keep the satellite such that the optical axis of the mirror is pointing to the detector satellite. The other is a detector satellite that carries an SDCCD system. The SDCCD is a CCD with a scintillator that is directly attached to the CCD. The CCD chip is fully depleted which can be a back-illuminated CCD. The scintillator is attached to the CCD at back side so that it has high detection efficiency for visible photons generated inside the scintillator. The X-ray enters into the CCD at front side. Therefore, low energy X-rays (below 10 keV) can be photo-absorbed in the depletion layer of the CCD while high energy X-rays will be absorbed in the scintillator that will emit visible photons The visible photons can be detected by the CCD. Depletion layer events usually form small charge spread while scintillator events usually form large charge spread. These events generate charge spread in a symmetric form with different size.
On the contrary, charged particles leave an elongated charge spread that can be distinguished from X-ray events by pattern recognition. This project, Formation Flight All Sky Telescope (FFAST), will scan a large sky area at hard X-ray region.
The Soft X-ray Imager (SXI) is the X-ray CCD detector system on board the NeXT mission that is to be launched around 2013. The system consists of a camera, an SXI-specific data processing unit (SXI-E) and a CPU unit commonly used throughout the NeXT satellite. All the analog signal handling is restricted within the camera unit, and all the I/O of the unit are digital.
The camera unit and SXI-E are connected by multiple LVDS lines, and SXI-E and the CPU unit will be connected by a SpaceWire (SpW) network. The network can connect SXI-E to multiple CPU units (the formal SXI CPU and neighbors) and all the CPU units in the network have connections to multiple neighbors: with this configuration, the SXI system can work even in the case that one SpW connection or the formal SXI CPU is down.
The main tasks of SXI-E are to generate the CCD driving pattern, the acquisition of the image data stream and HK data supplied by the camera and transfer them to the CPU unit with the Remote Memory Access Protocol (RMAP) over SpW. In addition to them, SXI-E also detects the pixels whose values are higher than the event threshold and both adjacent pixels in the same line, and send their coordinates to the CPU unit. The CPU unit can reduce its load significantly with this information because it gets rid of the necessity to scan whole the image to detect X-ray events.
The NeXT (New exploration X-ray Telescope), the new Japanese X-ray Astronomy Satellite following Suzaku,
is an international X-ray mission which is currently planed for launch in 2013. NeXT is a combination of wide
band X-ray spectroscopy (3-80 keV) provided by multi-layer coating, focusing hard X-ray mirrors and hard
X-ray imaging detectors, and high energy-resolution soft X-ray spectroscopy (0.3-10 keV) provided by thin-foil
X-ray optics and a micro-calorimeter array. The mission will also carry an X-ray CCD camera as a focal plane
detector for a soft X-ray telescope and a non-focusing soft gamma-ray detector. With these instruments, NeXT
covers very wide energy range from 0.3 keV to 600 keV. The micro-calorimeter system will be developed by
international collaboration lead by ISAS/JAXA and NASA. The simultaneous broad bandpass, coupled with
high spectral resolution of ΔE ~7 eV by the micro-calorimeter will enable a wide variety of important science
themes to be pursued.
Suzaku is the fifth Japanese X-ray astronomical satellite and it was launched in July 2005. The Suzaku X-ray
Imaging Spectrometers (XISs) consist of four X-ray Charge-Coupled Device (CCD) cameras. Three of them are
front-illuminated (FI) CCD, and the other is back-illuminated (BI) CCD. The strong points of the XIS are a
high energy resolution, a large effective area, and a low and stable background. In particular, the background
level of the Suzaku/XIS is much lower than the other X-ray satellites, XMM-Newton/EPIC and Chandra/ACIS.
We investigated the background property of the XIS using the data obtained when the satellite is looking at the
night earth, and proved the low level and the stability of the XIS background. Non X-ray background (NXB)
consists of continuum component and some emission lines. The continuum component is very different between
the FI-CCD and the BI-CCD. We discussed the positional dependence of the continuum component and the line
components, and proved that the flux of the line components of the NXB is higher in the frame-store region than
the imaging area. Finally, we investigated the effects of magnetic cut-off rigidity (COR) upon the count rate of
NXB.
The X-ray Imaging Spectrometer on the Suzaku satellite consists three front-illuminated (FI) and one back-illuminated (BI) CCD cameras. Using ground calibration data taken at Kyoto University and Osaka University, we obtained the energy response of the XIS, which consists of at least six components: 1. a main peak, 2. a sub peak, 3. a triangle component, 4. a Si escape, 5. a Si line, and 6. a constant component. The relation between the energy and the pulse height was also estimated, which is called as a gain. The relation cannot be represented with a single linear function. Then we divided the gain into two parts at the Si edge (1.839 keV) and each part can be described with a single linear function. Thus there is a discontinuity at 1.839 keV in the XIS gain. We have monitored the variation of the gain and energy resolution in orbit by observing the calibration source of 55Fe illuminating two corners of each CCD.
We report on the origin of the instrumental background of the X-ray CCD camera in space obtained from the Monte Carlo simulation with GEANT4. In the space environment, CCD detects many non-X-ray events, which are produced by the interactions of high-energy particles with the materials surrounding CCD. Most of these events are rejected through the analysis of the charge split pattern, but some are remained to be background. Such instrumental background need to be reduced to achieve higher sensitivity especially above several keV. We simulated the interactions of the cosmic-rays with the CCD housing, and extracted the background events which escaped from the screening process by the charge split pattern. We could reproduce the observed spectral shape of the instrumental background of Suzaku XIS on orbit with the Monte Carlo simulation. This means
that the simulation succeeded to duplicate the background production process in space. From the simulation, we found that the major components of the background in the front-side illuminated CCD are the recoil electrons produced by the Compton-scattering of the hard X-ray photons in the CCD. On the other hand, for the backside illuminated CCD, contribution from the low energy electrons becomes dominant, which are produced by the interactions of cosmic-ray protons or hard X-rays with the housing. These results may be important to design the X-ray CCD camera for the future missions, such as NeXT.
We give overview and the current status of the development of the Soft X-ray Imager (SXI) onboard the NeXT
satellite. SXI is an X-ray CCD camera placed at the focal plane detector of the Soft X-ray Telescopes for Imaging
(SXT-I) onboard NeXT. The pixel size and the format of the CCD is 24 x 24μm (IA) and 2048 x 2048 x 2
(IA+FS). Currently, we have been developing two types of CCD as candidates for SXI, in parallel. The one is
front illumination type CCD with moderate thickness of the depletion layer (70 ~ 100μm) as a baseline plan.
The other one is the goal plan, in which we develop back illumination type CCD with a thick depletion layer
(200 ~ 300μm). For the baseline plan, we successfully developed the proto model 'CCD-NeXT1' with the pixel
size of 12μm x 12μm and the CCD size of 24mm x 48mm. The depletion layer of the CCD has reached 75 ~ 85μm.
The goal plan is realized by introduction of a new type of CCD 'P-channel CCD', which collects holes in stead
of electrons in the common 'N-channel CCD'. By processing a test model of P-channel CCD we have confirmed
high quantum efficiency above 10 keV with an equivalent depletion layer of 300μm. A back illumination type
of P-channel CCD with a depletion layer of 200μm with aluminum coating for optical blocking has been also
successfully developed. We have been also developing a thermo-electric cooler (TEC) with the function of the
mechanically support of the CCD wafer without standoff insulators, for the purpose of the reduction of thermal
input to the CCD through the standoff insulators. We have been considering the sensor housing and the onboard
electronics for the CCD clocking, readout and digital processing of the frame date.
The NeXT mission has been proposed to study high-energy non-thermal phenomena in the universe. The high-energy response of the super mirror will enable us to perform the first sensitive imaging observations up to 80 keV. The focal plane detector, which combines a fully depleted X-ray CCD and a pixelated CdTe detector, will provide spectra and images in the wide energy range from 0.5 keV to 80 keV. In the soft gamma-ray band upto ~1 MeV, a narrow field-of-view Compton gamma-ray telescope utilizing several tens of layers of thin Si or CdTe detector will provide precise spectra with much higher sensitivity than present instruments. The continuum sensitivity will reach several x 10-8 photons/s/keV/cm2 in the hard X-ray region and a few x 10-7 photons/s/keV/cm2 in the soft gamma-ray region.
NeXT is the X-ray satellite proposed for the next Japanese space
science mission. While the satellite total mass and the launching
vehicle are similar to the prior satellite Astro-E2, the
sensitivity is much improved; it requires all the components to
be lighter and faster than previous architecture. This paper shows
the data processing architecture of the X-ray CCD camera system SXI
(Soft X-ray Imager), which is the top half of the WXI (Wide-band X-ray
Imager) of the sensitivity in 0.2-80keV. The system is basically
a variation of Astro-E2 XIS, but event extraction speed is much faster
than it to fulfill the requirements coming from the large effective area and fast exposure period. At the same time, data transfer lines
between components are redesigned in order to reduce the number
and mass of the wire harnesses that limit the flexibility of the
component distribution.
We report on design updates for the XIS (X-ray Imaging Spectrometer)
on-board the Astro-E2 satellite. Astro-E2 is a recovery mission of Astro-E, which was lost during launch in 2000. Astro-E2 carries a total of 5 X-ray telescopes, 4 of which have XIS sensors as their focal plane detectors. Each XIS CCD camera covers a field of view of 19×19 arcmin in the energy range of 0.4-12 keV. The design of the Astro-E2 XIS is basically the same as that for Astro-E, but some improvements will be implemented. These are (1) CCD charge injection capability, (2) a revised heat-sink assembly, and (3) addition of a 55Fe radio-isotope on the door. Charge injection may be used to compensate for and calibrate radiation-induced degradation of the CCD charge transfer efficiency. This degradation is expected to become significant after a few year's operation in space. The new heat-sink assembly is expected to increase the mechanical reliability and cooling capability of the XIS sensor. The new radio-isotope on the door will provide better calibration data. We present details of these improvements and summarize the overall design of the XIS.
We have developed a novel architecture to process 2-dimensional digital image data with very high speed. The architecture is realized with an FPGA to extract only the X-ray signals from the raw frame data of an X-ray CCD for an astronomical use. The circuit scale is small enough to be implemented in an FPGA currently available for a space use, while the data processing speed of 107 pixels/sec is achieved. The architecture can be adapted in principle to a wide range of applications.
Soft X-ray response of X-ray Imaging Spectrometers (XIS) for the Astro-E satellite is measured with a grating spectrometer system at Osaka. First, relation between incident X-ray energy and output pulse height peak (E-PH relation) is examined with an SX grating. It is found that jump in the E-PH relation around Si-K edge is at most 2.7 eV. Second, quantum efficiency (QE) of the XIS in 0.4 - 2.2 keV range is measured relatively to the reference CCD of which absolute QE was calibrated with a gas proportional counter. The QE is fitted with a model in which CCD gate structures are considered. Systematic error on the QE results is estimated by referring an independent measurement. Third, tuning and improvement of the response function is performed. We employ six components to reproduce the response profile of the XIS. In this paper, improvement of one component which is originated in the events absorbed in the channel-stop is presented. Nevertheless, Astro-E was lost due to the launch failure. We overview the XIS project in its flight model phase, modified points of the design, problems and solutions etc., in order to be utilized in a possible recovery of the satellite.
KEYWORDS: Charge-coupled devices, Field programmable gate arrays, Data acquisition, Clocks, Analog electronics, X-rays, Signal processing, Control systems, CCD cameras, Multiplexers
We have developed a completely new type of general-purpose CCD data acquisition system which enables us to drive any kinds of CCD with any kinds of clocking modes. A CCD driver system widely used before is consisted of analog multiplexer (MPX), digital-to-analog converter (DAC), and operational amplifier. DAC is used to determine high and low voltage levels and MPX selects each voltage level using TTL clock. In this kind of driver board, it is difficult to reduce the noise caused by a short of high and low level in MPX and to select many kinds of different voltage levels.
The x-ray imaging spectrometers (XIS) are x-ray CCD cameras on-board the Astro-E satellite launched in 2000. The XIS consists of 4 cameras, each of them will be installed on a focal plane of the Astro-E X-ray Telescope (XRT). The XIS not only have a higher sensitivity, which comes from a larger effective area of the XRT and thicker depletion layers of the XIS CCDs, than ASCA SIS. But also have several features that will overcome the radiation damage effects anticipated in the orbit. The calibration experiment at Osaka focuses on the soft x-ray response of the XIS. The calibration system employs a grating spectrometer which irradiates the CCD with dispersed x-rays. We have obtained preliminary results on the XIS proto model, including the energy-pulse-height relation, the energy-resolution relation, and the quantum efficiency at the energy range of 0.25-2.2 keV.
We studied the proton damage effects of the x-ray CCD. We have measured x-ray CCD performances after the irradiation of energies at 2 and 9.5 MeV, and confirmed clear degradation of charge transfer efficiency (CTE) and the energy resolution. To recover degraded CTE and the energy resolution, we tried the charge injection technique, and found the improvement of CTI and the energy resolution to be one-quarter and one-third, respectively. We also estimated the energy level of the deep trap, which causes the quantization of the dark current from the radiation-damaged pixels. The trap energy level is about 0.57 eV, or near the center of forbidden band.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.