A key aspect of the thin film coating development for the NewATHENA X–ray optics, is to determine the adhesion efficiency and the residual stress limitation of the coatings on silicon substrates. To do so, we magnetron sputtered different layer thicknesses of chromium layers underneath iridium/carbon bilayer and linear graded multilayer coatings. The samples were characterized using X–ray Reflectometry (XRR) to derive the thickness and micro–roughness. The residual stress was assessed by profilometry using a Dektak 150 stylus profilometer. The curvature of the samples before and after coating, along with the total film thickness derived from XRR, was used to evaluate the residual stress.
The facility is compact (just 8 m x 14 m). Thanks to an innovative optical design based on an asymmetrical-cut crystal associated with a paraboloidal grazing incidence mirror, it can produce an expanded X-ray beam (170 mm x 60 mm) with low divergence (about 2 arcsec measured for the 4.51 keV beamline) at the two monochromatic energies of 4.51 keV and 1.49 keV. This allows us to calibrate each SPO MM's Effective Area and Point Spread Function precisely.
The first beamline, at 4.51 keV photon energy, is already operational, as the commissioning was completed in Q1-2023. The second beamline, at 1.49 keV energy, is being developed. It presents some more challenging aspects from both the design and implementation points of view. The monochromator stage is based on two Quartz (100); two ADP asymmetric-cut crystals (101) will provide the horizontal expansion of the beam. The X-ray source needs to be very brilliant (5 x 1011 - 1012 ph/s/sterad) due to the large fraction of photons rejected by the crystals.
This paper describes the ongoing activities. It will present the results of the 4.51 keV X-ray beamline optimization and the tests performed on a coated MM. It will also describe the progress in implementing the 1.49 keV components and discuss the comparison with other X-ray testing facilities.
In this paper we present our current state-of-the-art SPO plate manufacturing process. Special attention is given to the recent advancements in optimizing and upscaling the dicing process, the laser-ID labelling process, wafer-scale automated measurements of plate critical to quality parameters, as well as the lithography process for reflective coating lift-off. Furthermore, the different wedging methodologies and the shift from wetbench processing to spray processing are introduced. The combined efforts in all of these areas enable a more automated plate manufacturing process, and an increase in optical performance of the telescope.
Using a combination of process development and upgraded machinery, the future flight production scenario for NewATHENA begins to take shape.
XRR scans provide detailed insights into thin film properties, however, the dependence on accurate a priori knowledge necessitates a robust model for solving the inverse problem. Addressing this limitation, XPS proves invaluable in revealing the chemical composition of thin films, improving the accuracy of the XRR model. Combined characterization through OM and XRR is very useful to find visual insights into surface contamination-induced changes when mirrors are stored for long periods in a clean room environment, as might be the case for some astronomical missions. The synergy among these techniques is pivotal for evaluating coating quality for high-energy astronomical telescopes, with a specific focus on NewAthena and upcoming missions. This research not only advances methodologies in this field but also highlights the collaborative power of XRR, XPS, and OM in providing a comprehensive understanding of thin film coatings, emphasizing the importance of pre-coating mirror quality and mitigating contamination effects throughout the optics production process to ensure optimal performance.
The Silicon Pore Optics (SPO) enables the NewAthena mission, delivering an unprecedented combination of good angular resolution, large effective area and low mass. The SPO technology builds significantly on spin-in from the semiconductor industry and is designed to allow a cost-effective flight optics implementation, compliant with the programmatic requirements of the mission.
The NewAthena X-ray optics is highly modular, consisting of hundreds of compact mirror modules arranged in concentric circles and mounted on a metallic optical bench. All aspects of the optics are being developed in parallel, from the industrial production of the mirror plates, over the highly efficient assembly into mirror modules, to the alignment of the mirror modules and their fixation on the optical bench. Dedicated facilities are being built to measure the performance of the NewAthena X-ray telescope optics, demonstrating their compatibility with the environmental and scientific requirements.
An overview is provided of the activities preparing the implementation of the NewATHENA optics.
We present in this paper the status of the optics production and illustrate not only recent X-ray results but also the progress made on the environmental testing, manufacturing and assembly aspects of SPO based optics.
The next generation x-ray observatory ATHENA (advanced telescope for high energy astrophysics) requires an optics with unprecedented performance. It is the combination of low mass, large effective area and good angular resolution that is the challenge of the x-ray optics of such a mission. ATHENA is the second large class mission in the science programme of ESA, and is currently in a reformulation process, following a design-to-cost approach to meet the cost limit of an ESA L-class mission.
The silicon pore optics (SPO) is the mission enabler being specifically developed for ATHENA, in a joint effort by industry, research institutions and ESA. All aspects of the optics are being addressed, from the mirror plates and their coatings, over the mirror modules and their assembly into the ATHENA telescope, to the facilities required to build and test the flight optics, demonstrating performance, robustness, and programmatic compliance.
The SPO technology is currently being matured to the level required for the adoption of the ATHENA mission, i.e., the start of the mission implementation phase. The monocrystalline silicon material and pore structure of the SPO provide these optics with excellent thermal and mechanical properties. Benefiting from technology spin-in from the semiconductor industry, the equipment, processes, and materials used to produce the SPO are highly sophisticated and optimised.The preparations are ongoing at PANTER, ESA, cosine and Media Lario to perform complex opto-thermo-mechanical tests of the two full scale 1/6th sectors of the final ATHENA mirror assembly structure produced by the potential ATHENA primes Airbus Defence and Space and Thales Alenia Space. For these tests a set of three SPO MMs have been produced following the flight configuration. The MMs will be incorporated into the full scale 1/6th sectors to measure the impact of thermal gradients on the thermoelastic deformation of the structure and therefore the HEW performance. A description of the tests is presented here.
PANTER is also involved in the development, testing, and fabrication of the mirror adapter structure (MAS) to support the 2.6-m diameter ATHENA mirror assembly module demonstrators (MAMD) during the planned x-ray tests at XRCF. A description of the PANTER tests and results will be presented in this paper together with a short overview of the MAS MGSE for XRCF.
One activity has centred on the use of coated, silicon wafers, patterned with ribs, that are integrated onto a mandrel whose form has been polished to the required shape. The wafers follow the shape precisely, forming pore sizes in the sub-mm region. Individual stacks of mirrors can be manufactured without risk to, or dependency on, each other and aligned in a structure from which they can also be removed without hazard. A breadboard is currently being built to demonstrate this technology.
A second activity centres on glass pore optics. However an adaptation of micro channel plate technology to form square pores has resulted in a monolithic material that can be slumped into an optic form. Alignment and coating of two such plates produces an x-ray focusing optic. A breadboard 20cm aperture optic is currently being built.
Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the manufacturing process ranging from single mirror plates towards complete focusing mirror modules mounted in flight configuration. The performance of the mirror modules is tested using X-ray pencil beams or full X-ray illumination. In 2009, an angular resolution of 9 arcsec was achieved, demonstrating the improvement of the technology compared to 17 arcsec in 2007. Further development activities of Silicon Pore Optics concentrate on ruggedizing the mounting system and performing environmental tests, integrating baffles into the mirror modules and assessing the mass production.
We present first results of demonstrating Silicon Pore Optics for the extreme radial positions of the Athena telescope. For the inner most radii (0.25 m) a new mirror plate design is shown which overcomes the challenges of larger curvatures, higher stress values and bigger plates. Preliminary designs for the mounting system and its mechanical properties are discussed for mirror modules covering all other radial positions up to the most outer radius of the Athena telescope.
The characterization of large aperture (> 2 meters), long focal length (> 10 meters) X-ray mirrors for X-ray astronomy with synchrotron radiation poses signi cant problems related to the available space at synchrotron radiation facilities. Intrafocal pencil beam characterization of part of the optics is advantageous if its results can be shown to have predictive capabilities with respect to the full system.
In this paper we present the routine characterization of silicon pore optics at the X-ray Pencil Beam Facility of the Physikalisch-Technische Bundesanstalt, located at the synchrotron radiation facility BESSY II (Berlin, Germany). In particular we show how measurements taken in the standard beamline con guration (detector at ve meters from the optics) can e ectively be used to predict the optical performance of the optics at their design focal length by comparing data taken on 20-meter focal length Silicon Pore Optics unit in the 20-meter beamline con guration (available only for a few weeks every year) with extrapolated 5-meter measurements.
Silicon Pore Optics is an enabling technology for future L- and M-class astrophysics X-ray missions, which require high angular resolution (~5 arc seconds) and large effective area (1 to 2 m2 at a few keV). The technology exploits the high-quality of super-polished 300 mm silicon wafers and the associated industrial mass production processes, which are readily available in the semiconductor industry. The plan-parallel wafers have a surface roughness better than 0.1 nm rms and are diced, structured, wedged, coated, bent and stacked to form modular Silicon Pore Optics, which can be grouped into a larger optic. The modules are assembled from silicon alone, with all the mechanical advantages, and form an intrinsically stiff pore structure.
The optics design was initially based on long (25 to 50 m) focal length X-ray telescopes, which could achieve several arc second angular resolution by curving the silicon mirror in only one direction (conical approximation).
Recently shorter focal length missions (10 to 20 m) have been discussed, for which we started to develop Silicon Pore Optics having a secondary curvature in the mirror, allowing the production of Wolter-I type optics, which are on axis aberration-free.
In this paper we will present the new manufacturing process, the results achieved and the lessons learned.
Cosine has developed the technology to bend and directly bond Si mirror plates in order to produce stiff, lightweight Xray optics which are used for large area space based X-ray telescopes. This technology, Silicon Pore Optics (SPO), also allows us to produce other types of high energy optics. Here we present the latest developments in the design and manufacture of a new generation of soft gamma-ray Laue lenses made using SPO technology named Silicon Laue lens Components: SiLC.
The bending and bonding of 300 μm thin Si single crystals allows us to fabricate a single crystal with radially curved crystal planes, which strongly improves the focusing properties of a Laue lens. The size of the focal spot is no longer determined by the size of the individual single crystals, but by the accuracy of the applied curvature, which is as low as a few seconds of arc. Furthermore, a wedge is incorporated in each individual Si crystal to ensure that all crystals are confocal in the radial direction. A secondary curvature in the axial direction can be used to improve the reflectivity of each crystal, and increase the reflected energy bandwidth.
We present the first SiLC crystals which will be manufactured in the fall of 2013. These are technology demonstrators designed for 125 keV radiation, 3.4m focal length and 600mm2 frontal area. The first measurements at synchrotron radiation facilities are planned for November 2013. With these first prototype lenses we want to demonstrate that the SPO stacking technology can be successfully applied to non-ribbed Si wafer plates and subsequently demonstrate the correct focusing in Laue geometry of both the wedges and radial curvature.
Silicon Pore Optics (SPO) provide a high angular resolution with a low areal density as required for future X-ray telescopes for high energy astrophysics. We present progress in two areas of ESA’s SPO development activities: Stray light baffling and environmental qualification.
Residual stray light originating from off-axis sources or the sky background can be blocked by placing suitable baffles in front of the mirror modules. We developed two different mechanical implementations. The first uses longer, tapered mirror plates which improve the stray light rejection without the need of mounting additional parts to the modules or the telescope. The second method is based on placing a sieve plate in front of the optics. We compare both methods in terms of baffling performance using ray-tracing simulations and present test results of prototype mirror modules.
Any optics for space telescopes needs to be compliant with the harsh conditions of the launch and in-orbit operation. We present new work in improving the mechanical and thermal ruggedness of SPO mirror modules and show recent results of qualification level tests, including tests of modules with externally mounted sieve plate baffles.
Future high energy astrophysics missions will require high performance novel X-ray optics to explore the Universe beyond the limits of the currently operating Chandra and Newton observatories. Innovative optics technologies are therefore being developed and matured by the European Space Agency (ESA) in collaboration with research institutions and industry, enabling leading-edge future science missions.
Silicon Pore Optics (SPO) [1 to 21] and Slumped Glass Optics (SGO) [22 to 29] are lightweight high performance X-ray optics technologies being developed in Europe, driven by applications in observatory class high energy astrophysics missions, aiming at angular resolutions of 5” and providing effective areas of one or more square meters at a few keV.
This paper reports on the development activities led by ESA, and the status of the SPO and SGO technologies, including progress on high performance multilayer reflective coatings [30 to 35]. In addition, the progress with the X-ray test facilities and associated beam-lines is discussed [36].
Silicon Pore Optics (SPO) is a lightweight high performance X-ray optics technology being developed in Europe, driven by applications in observatory class high energy astrophysics missions. An example of such application is the former ESA science mission candidate ATHENA (Advanced Telescope for High Energy Astrophysics), which uses the SPO technology for its two telescopes, in order to provide an effective area exceeding 1 m2 at 1 keV, and 0.5 m2 at 6 keV, featuring an angular resolution of 10” or better [1 to 24].
This paper reports on the development activities led by ESA, and the status of the SPO technology. The technology development programme has succeeded in maturing the SPO further and achieving important milestones, in each of the main activity streams: environmental compatibility, industrial production and optical performance. In order to accurately characterise the increasing performance of this innovative optical technology, the associated X-ray test facilities and beam-lines have been refined and upgraded.
View contact details