This paper considers an evasion maneuver for low-altitude aircraft (A/C) in the presence of the threat of a guided missile. The missile has boost and sustain phases and its trajectory is estimated by a 7-D motion parameter vector. The maximum likelihood estimator is used to estimate the missile motion parameters based on angle measurements from an A/C-borne passive sensor. Based on the estimated closest point of approach distance between the missile and the aircraft, a warning alert is then given to execute an evasion maneuver. The aircraft can bank away from the missile by a turning maneuver in the horizontal plane. Simulation shows that the aircraft can evade the missile by using the turning maneuver. The survivability probability of the aircraft is evaluated and it can be enhanced by an early maneuver start time and a large acceleration during the maneuver.
The 3D trajectory estimation and observability problems of a target have been solved by using angle-only measurements. In previous works, the measurements were obtained in the thrusting/ballistic phase from a single fixed passive sensor. The present work solves the motion parameter estimation of a ballistic target in the reentry phase from a moving passive sensor on a fast aircraft. This is done with a 7-dimension motion parameter vector (velocity azimuth angle, velocity elevation angle, drag coefficient, target speed and 3D position). The maximum likelihood (ML) estimator is used for the motion parameter estimation at the end of the observation interval. Then we can predict the future position at an arbitrary time and the impact point of the target. The observability of the system is verified numerically via the invertibility of the Fisher information matrix. The Cramer–Rao lower bound for the estimated parameter vector is evaluated, and it shows that the estimates are statistically efficient. Simulation results show complete observability from the scenario considered, which illustrates that a single fast moving sensor platform for a target can estimate the motion parameter in the reentry phase.
This paper considers the problem of estimating the launch point (LP) of a thrusting object from a single fixed sensor’s 2-D angle-only measurements (azimuth and elevation). It is assumed that the target follows a mass ejection model and the measurements obtained are available starting a few seconds after the launch time due to limited visibility. Previous works on this problem estimate the target’s state, which, for a passive sensor, requires a long batch of measurements, is sensitive to noise and ill-conditioned. In this paper, a polynomial fitting with the least squares approach is presented to estimate the LP without motion state estimation. We provide a statistical analysis to choose the optimal polynomial order, including overfitting and underfitting evaluation. Next, we present Monte Carlo simulations to show the performance of the proposed approach and compare it to the much more complicated state of the art technique that relies on state estimation. It is shown that the proposed method provides a much simpler and effective way than the state estimation methods to implement in a real-time system.
The problem of selecting a target of interest for interdiction in the presence of several spurious tracks that are meant to confuse the defense has been around for several decades. The spurious tracks are from the objects released from the target of interest and they move forward at the same speed as the target of interest. They separate due to a release velocity orthogonal to the forward motion. The main means of carrying out the discrimination between the target of interest and the spurious tracks discussed in the literature is using some features, which, however, are not always available. The present work considers this problem when the extraneous tracks “look” the same as the target of interest for the sensor tracking them, i.e., they have no distinguishing features. It is shown that the history of the track kinematics — the evolution of the tracks — can be used via “track segment association” to select the track of the target of interest from the several tracks in the field of view of the sensor. One of the challenges of this work is that, with limited resolution capability, the observations from the sensor are unresolved when the extraneous targets start separating. In this work, the data association and tracking are handled separately from track segment association, which reduces the complexity of the problem and is shown to have timely and reliable results in the simulations.
In this paper we present a new method for shaping of a pulsed IR (λ=1550 nm) laser beam in silicon. The shaping is based on plasma dispersion effect (PDE). The shaping is done by a second pulsed pump laser beam at 532 nm which simultaneously and collinearly illuminates the silicon’s surface with the IR beam. Following the PDE, and in proportion to its spatial intensity distribution, the 532 nm laser beam shapes the point spread function (PSF) by controlling the lateral transmission of the IR probe beam. The use of this probe in laser scanning microscope allows imaging and wide range of contactless electrical measurements in silicon integrated circuits (IC) being under operation e.g. for failure analysis purposes. We propose this shaping method to overcome the diffraction resolution limit in silicon microscopy on and deep under the silicon surface depending on the wavelength of the pump laser and its temporal pulse width. This approach is similar to the stimulated emission depletion (STED) concept previously introduced in scanning fluorescence microscopy.
A critical limitation imposed on all imaging systems is to achieve an optimal balance between optical resolution and bandwidth. The optical system determines and affects the relations between temporal information, spatial bandwidth, and resolution, so the resulting signal may differ for each wavelength. This is of significant importance for hyperspectral imaging in particular, because it extracts both spatial and temporal wavelength information. We present a dispersive device that can be used for hyperspectral imaging hypercube image measurements. We utilize the Vernier effect by integrating two silicon slabs that act together as a modified Fabry–Perot filter. The transition between wavelength bands is achieved by heating, utilizing the thermo-optic effect. Importantly, we show that red-shifting with concatenated slabs requires less heating than with a single slab. With the presented technique, a wide effective free spectral range of up to 90 nm around a central wavelength of 1550 nm was achieved along with 20-nm full-width-at-half-maximum resolution. With the same configuration, observing a narrower 0.7-nm free spectral range bandwidth, a fine spectrum resolution of 0.07 nm was obtained. Such variety covers most of the spatial and temporal standard limitations of current hyperspectral imaging requirements.
In attempt to supply a reasonable fire plume detection, multinational cooperation with significant
capital is invested in the development of two major Infra-Red (IR) based fire detection alternatives,
single-color IR (SCIR) and dual-color IR (DCIR). False alarm rate was expected to be high not only as a
result of real heat sources but mainly due to the IR natural clutter especially solar reflections clutter.
SCIR uses state-of-the-art technology and sophisticated algorithms to filter out threats from clutter.
On the other hand, DCIR are aiming at using additional spectral band measurements (acting as a
guard), to allow the implementation of a simpler and more robust approach for performing the same
task.
In this paper we present the basics of SCIR & DCIR architecture and the main differences between
them. In addition, we will present the results from a thorough study conducted for the purpose of
learning about the added value of the additional data available from the second spectral band. Here
we consider the two CO2 bands of 4-5 micron and of 2.5-3 micron band as well as off peak band
(guard). The findings of this study refer also to Missile warning systems (MWS) efficacy, in terms of
operational value. We also present a new approach for tunable filter to such sensor.
In this paper we present an all-optical silicon modulator, where a silicon slab (450 μm) thick is coated on both sides to get a Fabry-Perot resonator for laser beam at wavelength of 1550nm. Most of the modulators discussed in literature, are driven by electrical field rather than by light. We investigate new approaches regarding the dependence of the absorption of the optical signal on the control laser pulse at 532 nm having 5nm pulse width. Our silicon based Fabry-Perot resonator increases the intrinsic c-Si finesse to >10, instead of the uncoated silicon with natural finesse of 2.5. The improved finesse is shown to have significant effect on the modulation depth using a pulsed laser. A modulation of 12dB was attained. The modulation is ascribed to two different effects - The Plasma Dispersion Effect (PDE) and the Thermo- Optic Effect (TOE). The PDE causes increase in the signal absorption in silicon via the absorption of the control laser light. On top of that, the transmission of the signal can decrease dramatically in high finesse resonators due to change in the refractive index due to TOE. The changes in the signal's absorption coefficient and in the refractive index are the result of incremental change in the concentration of free carriers. The TOE gives rise to higher refractive index as opposed to the PDE which triggers a decrease in the refractive index. Finally, tradeoff considerations are presented on how to modify one effect to counter the other one, leading to an optimal device having reduced temperature dependence.
An evolving combat arena poses an ever-growing hostile fire threat for various ground and airborne targets. Protecting both static posts and moving military platforms against these threats require high performance and affordable solutions, favoring uncooled sensing alert technologies. By analyzing accumulated target and clutter data using new algorithmic and hardware building blocks we establish improved hostile fire indication system configurations. The paper will review new system demonstrations harnessing uncooled IR sensors technology alongside empirical field testing results.
A passive IR approach for stationary system is introduced providing protection to high value infrastructure
and strategic areas by detecting and warnings against fire shot from rifles, carbines, sub-machines and various
other small arms - SWAD.
SWAD provides protected surroundings in which it remotely detects small arms fire. By analyzing their
patterns, including duration and intensity, SWAD classifies the type of weapon being used.
Infrared staring sensors used in a large field of view (panoramic) applications such as IRST and MWS are still in need for specialized figures of merit to bridge the gap between feasible laboratory measurements and specification and actual performance. Imaging applications has so far dominated the industry attention and so the need to examine the applicability of conventional analyzing concepts and testing procedures for the new applications was overlooked. In this paper we present a universal test station for panoramic MWS/IRST sensors, designed by Elisra and built by CI-Systems Inc. Following the description of the test station configuration, a set of measurable figures of merit and corresponding test procedures that were devised by the authors to support a panoramic sensor specification are introduced. The figures of merit, replacing conventional resolution, sensitivity and pointing accuracy mapping concepts are suggested and explained as viable alternative to the analogous imaging sensors measurement concepts.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.