KEYWORDS: Biosensing, Chemical vapor deposition, Biological and chemical sensing, Chemical reactions, Environmental monitoring, Environmental sensing, Diamond, Annealing, Nanolithography, Plasma enhanced chemical vapor deposition
Cellular sensing using nanodiamond is an emerging field, giving access to monitoring of chemical reactions in biological environment at nanoscale. Currently used nanodiamonds are prepared by irradiation of N-containing milled HPHT synthetic diamond and subsequent annealing. These nanodiamond suffer form irregular sizes and low spin coherence time which makes the detection in cells very challenging. We come with novel method for nanodiamond fabrication by plasma enhanced CVD, which allows to control the crystal shape and size and spin characteristics. We discuss application of optimized nanodiamond for cellular sensing
The talk discusses recent technological progress in fabrication of NV fluorescent nanodiamond probes for intracellular sensing. Highly luminescent nanodiamond can be fabricated, by electron or proton irradiation. This includes irradiation using liquid targets yielding high homogeneity in concentration of NV centers over the irradiation batch. The surface functionalization methods, including selective substitution of surface groups by fluorine, stabilize NV- luminescence and provide probes, sensitive to NV0 - NV- charge switching. The charge sensing, using NV0 - NV conversion is further explained and used as sensitive method for detection of charge molecules and used for real time monitoring of DNA delivery. Finally prospects for using NV diamond probes, including particles with size < 10 nm for intracellular sensing, are discussed.
When state-of-the-art bulk heterojunction organic solar cells with ideal morphology are exposed to prolonged storage or operation at elevated temperatures, a thermally induced disruption of the active layer blend can occur, in the form of a separation of donor and acceptor domains, leading to diminished photovoltaic performance. Toward the long-term use of organic solar cells in real-life conditions, an important challenge is, therefore, the development of devices with a thermally stable active layer morphology. Several routes are being explored, ranging from the use of high glass transition temperature, cross-linkable and/or side-chain functionalized donor and acceptor materials, to light-induced dimerization of the fullerene acceptor. A better fundamental understanding of the nature and underlying mechanisms of the phase separation and stabilization effects has been obtained through a variety of analytical, thermal analysis, and electro-optical techniques. Accelerated aging systems have been used to study the degradation kinetics of bulk heterojunction solar cells in situ at various temperatures to obtain aging models predicting solar cell lifetime. The following contribution gives an overview of the current insights regarding the intrinsic thermally induced aging effects and the proposed solutions, illustrated by examples of our own research groups.
Optical absorption phenomena and in particular sub band gap absorption features are of great importance in the understanding of processes of charge generation and transport in organic pure and composite semiconductor films. To come towards this objective, an alternative and high sensitive spectroscopic approach is introduced to examine the absorption of light in pure and compound organic semiconductors. Because sub band gap absorption features are typically characterized by very low absorption coefficients, it is not possible to resolve them using common transmission and reflection measurements and high sensitive alternatives are needed. Therefore, a combination of photocurrent (Constant Photocurrent Method CPM/Fourier Transform Photocurrent Spectroscopy FT-PS) and photothermal techniques (Photothermal Deflection Spectroscopy PDS) has been used, increasing sensitivity by a factor of thousand, reaching detectable absorption coefficients ((E) down to 0.1 cm-1. In this way, the dynamic range of measurable absorption coefficients is increased by several orders of magnitude compared to transmission/reflection measurements. These techniques have been used here to characterize ground state absorption of thin films of MDMO-PPV, PCBM and a mixture of both materials in a 1:4 ratio, as typically used in a standard active layer in a fully organic solar cell. The spectra reveal defect related absorption phenomena and significant indication of existing interaction in the ground state between both materials, contrary to the widely spread conviction that this is not the case. Experimental details of the techniques and measurement procedures are explained.
Solar ultraviolet imaging instruments in space pose most demanding requirements on their detectors in terms of dynamic range, low noise, high speed, and high resolution. Yet UV detectors used on missions presently in space have major drawbacks limiting their performance and stability. In view of future solar space missions we have started the development of new imaging array devices based on wide band gap materials (WBGM), for which the expected benefits of the new sensors - primarily visible blindness and radiation hardness - will be highly valuable. Within this initiative, called “Blind to Optical Light Detectors (BOLD)”, we have investigated devices made of AlGa-nitrides and diamond. We present results of the responsivity measurements extending from the visible down to extreme UV wavelengths. We discuss the possible benefits of these new devices and point out ways to build new imaging arrays for future space missions.
Current state-of-the-art bulk hetero-junction organic photovoltaic devices will be discussed based on poly(2-methoxy-5-(3',7'-dimethyl-octyloxy))-p-phenylene vinylene, (MDMO-PPV), as an electron donor and (6,6)-phenyl-C61-butric-acid (PCBM)(a soluble C60 derivative) as electron acceptor. A brief review will be provided summarizing recent results on efficiency enhancement on morphological investigations. A significant increase in power conversion efficiency has been demonstrated for devices based on so-called 'sulphinyl' synthesized MDMO-PPV (ηAM1.5 = 2.9%) in comparison with devices based on 'Gilch' synthesized MDMO-PPV (ηAM1.5 = 2.5%). In order to understand the higher efficiency values obtained using a different solvent or a different MDMO-PPV-material, electrical and morphological investigations are being performed. Concerning the latter, it has been shown with various analytical techniques that the morphology of the blended photoactive films and also the power conversion efficiency of the corresponding photovoltaic devices are both simultaneously influenced by preparation conditions such as choice of the solvent and drying conditions.
BOLD (Blind to the Optical Light Detectors) is an international initiative dedicated to the development of novel imaging detectors for UV solar observations. It relies on the properties of wide bandgap materials (in particular diamond and Al-Ga-nitrides). The investigation is proposed in view of the Solar Orbiter (S.O.) UV instruments, for which the expected benefits of the new sensors -primarily visible blindness and radiation hardness- will be highly valuable. Despite various advances in the technology of imaging detectors over the last decades, the present UV imagers based on silicon CCDs or microchannel plates exhibit limitations inherent to their actual material and technology. Yet, the utmost spatial resolution, fast temporal cadence, sensitivity, and photometric accuracy will be decisive for the forthcoming solar space missions. The advent of imagers based on wide-bandgap materials will permit new observations and, by simplifying their design, cheaper instruments. As for the Solar Orbiter, the aspiration for wide-bandgap material (WBGM) based UV detectors is still more sensible because the spacecraft will approach the Sun where the heat and the radiation fluxes are high. We describe the motivations, and present the program to achieve revolutionary flight cameras within the Solar Orbiter schedule as well as relevant UV measurements.
The growth of high quality Chemical Vapor Deposited (CVD) Diamond is an enabling technology for a number of long wave, infrared, power handling and imaging applications. This is demonstrated using data showing scatter and absorption levels and also the material's resistance to high power, continuous wave CO2 lasers with powers in excess of 15 kW. Data are also given for relevant properties in the near infrared (for which scatter and image degradation are more sensitive to material quality) which show that high optical quality CVD diamond can now be produced which will also enable a number of applications at these shorter wavelengths.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.