As advanced semiconductor technologies continuing to evolve, defect detection and classification have experienced increased challenges because the complex process involved with greatly increased transistor density resulting in high defect rates. This makes it more challenging than before for traditional analysis done by human experts prone to error due to long hours of focus required. Software with rules may be used to overcome this, but still faces the issue to construct them, since image quality varies from process to process and layer to layer. In this paper we propose using a machine learning (ML) model, YOLO (You Only Look Once) v8, that will learn complex rules that can generalize to various image qualities and accurately detect defects without human intervention.
Performing accurate and timely Scanning Electron Microscope (SEM) image analysis to identify wafer defects is crucial as it directly impacts manufacturing yield. In this paper, a machine learning (ML) based approach for analyzing SEM images (from wafer inspection machines) to locate and classify wafer defects is proposed. A state-of-the-art one-stage objection detection model called YOLOv8 (You Only Look Once version 8) is used as it offers a good balance between accuracy and inference speed. Experimental results confirm that an ensemble model composed of multiple YOLOv8 models can predict 6 types of defects with a mean Average Precision (mAP) of 0.789 (at IoU=0.5) for unseen test data consisting of real-world SEM images from 5 wafer fabs that have varying image qualities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.