The paper represents a study on the characteristics and biocompatibility of tissue-engineering structures with nanocarbon scaffolds in the bioorganic matter for various bioengineering applications, including biomedical devices for the heart treatment and neurostimulation. These structures were obtained via a laser formation method. Structures were printed using previously developed laser setup and had a cellular structure in accordance to the cell monolayer formation. It was established that SWCNT bind to amino acids through oxygen atoms. It was observed that the SWCNT diameter increased due to their wrapping by a bioorganic matter. Moreover, electrical conductivity values of such structures exceeded the heart tissue conductivity (0.1 S/m) and reached 8.5 S/m. The proliferation of fibroblasts and endothelial cells on the studied structures was demonstrated via the fluorescence microscopy and the MTT assay. The density of proliferated cells on structures was higher than in control samples. Finally, the biodegradation rate of tissue-engineered structures during the implantation to laboratory animals was 75-90 days, the samples promoted neovascularization of the affected tissue.
The technology of cell 3D scaffolds laser fabrication is developed. 3D scaffolds are designed to repair osteochondral defects, which are poorly restored during the organism’s life. The technology involves the use of an installation, the laser beam of which moves along a liquid nanomaterial and evaporates it layer by layer. Liquid nanomaterial consists of the water-protein (collagen, albumin) suspension with carbon nanoparticles (single-walled carbon nanotubes). During laser irradiation, the temperature in the region of nanotubes defects increases and nanotubes are combined into the scaffold. The main component of installation is a continuous laser operating at wavelengh of 810 nm. The laser beam moves along 3 coordinates, which makes it possible to obtain samples of the required geometric shape. The internal and surface structure of the samples at the micro- and nanoscale levels were studied using the X-ray microtomography and scanning electron microscopy. In vitro studies of cell growth during 48 and 72 hours demonstrated the ability of cell 3D scaffolds to support the proliferation of osteoblasts and chondroblasts. Using fluorescence and atomic force microscopy, it was found that the growth and development of cells on a sample with a larger concentration of nanotubes occurred faster compared to samples with a smaller concentration of nanotubes.
The study of structural properties of nanocomposites, based on different types of single walled carbon nanotubes (SWCNTs) and proteins (albumin, collagen), was carried out. The binding of protein molecules to the carbon component was described by Raman spectroscopy. Complex analysis of the structure and microporosity of nanocomposites was performed by the X-ray microtomography. The nanoporosity study was carried out using the low-temperature nitrogen porosimetry method. Samples based on SWCNTs with smaller size had the most homogeneity. With an increase in the concentration from 0.01 to 0.1 %, the mean micropore size increased from 45 to 93 μm, porosity in general increased from 16 to 28 %. The percentage of open pores was the same for all samples and was 0.02. As it was shown by Raman spectroscopy the protein component in nanocomposites has undergone irreversible denaturation and can act as a biocompatible binder and serve as a source of amino acids for biological tissues. These nanocomposites are bioresorbable and can be used to repair cartilage and bone tissue. This is especially important in the treatment of diseases of hyaline cartilage and subchondral bone.
The conductivity of layers (thickness 0.5 ÷ 50 μm) of composite nanomaterials consisting of bovine serum albumin (BSA) with single-walled carbon nanotubes (SWCNTs) has been studied. The aqueous dispersion of BSA / SWCNT was deposited on different substrates using the silk screening method. Conductivity was increased (30 ÷ 700) % by laser irradiation of the layers when they were in the liquid state. The investigated layers are promising for use in medical practice.
Laser welding device for biological tissue has been developed. The main device parts are the radiation system and adaptive thermal stabilization system of welding area. Adaptive thermal stabilization system provided the relation between the laser radiation intensity and the weld temperature. Using atomic force microscopy the structure of composite which is formed by the radiation of laser solder based on aqua- albuminous dispersion of multi-walled carbon nanotubes was investigated. AFM topograms nanocomposite solder are mainly defined by the presence of pores in the samples. In generally, the surface structure of composite is influenced by the time, laser radiation power and MWCNT concentration. Average size of backbone nanoelements not exceeded 500 nm. Bulk density of nanoelements was in the range 106-108 sm-3. The data of welding temperature maintained during the laser welding process and the corresponding tensile strength values were obtained. Maximum tensile strength of the suture was reached in the range 50-55°C. This temperature and the pointwise laser welding technology (point area ~ 2.5mm) allows avoiding thermal necrosis of healthy section of biological tissue and provided reliable bonding construction of weld join. In despite of the fact that tensile strength values of the samples are in the range of 15% in comparison with unbroken strips of pigskin leather. This situation corresponds to the initial stage of the dissected tissue connection with a view to further increasing of the joint strength of tissues with the recovery of tissue structure; thereby achieved ratio is enough for a medical practice in certain cases.
A new method for the formation of composite nanomaterials based on multi-walled and single-walled carbon nanotubes (CNT) on a silicon substrate has been developed. Formation is carried out by ultrasound coating of a silicon substrate by homogenous dispersion of CNTs in the albumin matrix and further irradiation with the continuous laser beam with a wavelength of 810 nm and power of 5.5 watts. The high electrical conductivity of CNTs provides its structuring under the influence of the laser radiation electric field. The result is a scaffold that provides high mechanical strength of nanocomposite material (250 MPa). For in vitro studies of materials biocompatibility a method of cell growth microscopic analysis was developed. Human embryonic fibroblasts (EPP) were used as biological cells. Investigation of the interaction between nanocomposite material and cells was carried out by optical and atomic force microscopy depending on the time of cells incubation. The study showed that after 3 hours incubation EPP were fixed on the substrate surface, avoiding the surface of the composite material. However, after 24 hours of incubation EPP fix on the sample surface and then begin to grow and divide. After 72 hours of incubation, the cells completely fill the sample surface of nanocomposite material. Thus, a nanocomposite material based on CNTs in albumin matrix does not inhibit cell growth on its surface, and favours their growth. The nanocomposite material can be used for creating soft tissue implants
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.