Supersymmetric transformations aim to relate boson and fermions, two different species of particles, and their interactions. In quantum mechanics, the mathematical framework of SUSY can be used to design isospectral potentials. By virtue of the isomorphism between Schrodinger and wave equations, one can use such transformations for designing novel optical systems. In this talk, we review the recent developments in the general area of supersymmetric optics and photonics. We will also discuss the possibility of generating high brightness coherent light in supersymmetric laser arrays.
We report on a novel nanoparticle platform by electric field assisted assembly, which is capable of manipulating the refractive index distribution through controlling the particle assembly. Two examples based on the control of the scattering properties are presented. We demonstrate lensless imaging in such a system. In addition, we show that random lasing can be enhanced by assembly of anisotropic particles immersed in a gain medium. These examples illustrate that particle assembly technique provides a promising platform for reconfigurable optical applications.
In this paper we show how to systematically design anti-reflective metasurfaces for the mid-infrared wavelength range. To do so, we have utilized a multilayer arrangement involving a judiciously nano-perforated surface, having air holes, arranged in a hexagonal fashion. By exploiting an effective medium approach, we optimized the dimensions of the surface features in our design. Here, we report a broadband reflectivity 3.5 − 5.5 μm that is below 10% over a broad range of incident angles 00 ≤ θ𝑖 ≤ 700 , irrespective of the incident polarization (TE, TM). Our experimental results are in excellent agreement with full-wave finite element simulations. This systematic approach can be used to design a wide variety of patterned metasurfaces, capable of controlling the phase of the incident optical field.
KEYWORDS: Photonics, Diffraction, Active optics, Near field optics, Digital video recorders, Video, Current controlled current source, Light scattering, Scattering, Diffraction gratings
Parity-time (PT) symmetric complex structures can exhibit peculiar properties which are otherwise unattainable in traditional Hermitian systems. This is achieved by judiciously involving balanced regions of gain and loss. Here we investigate the scattering properties of PT-symmetric diffraction gratings. The presence of the imaginary potential can modify the light transport properties in their far field. This is an outcome of a local power flow taking place between the gain and loss regions in the near field. We show that for a certain gain/loss contrast, all the negative diffraction orders can be eliminated while the positive diffraction orders can be amplified.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.