We report our proof-of-principle experiment and modeling of hexagonal micro-pillar cavities. A commercial hexagonal silica fiber (125μm plane-to-plane) was side-coupled perpendicularly with a Gaussian beam, thus the fiber acted as a μ-pillar cavity. We observed multimode resonances with typical Q ≈ 2,500 in the tangential directions that are ≈ 120° to the input-coupling cavity sidewall. The observed free spectral range (FSR) ≈ 4.5 nm is consistent with a six-bounce cavity round-trip length. By using wavefront-matching concept, the observed multimode resonances can be attributed to open-loop trajectories. The multiple wavefront-matched open-loop trajectories of the same ray incident angle can result in resonance linewidth broadening. We employed a k-space representation to calculate the hexagonal cavity normal mode locations.
Hexagonal micropillar (μ-pillar) cavities have been studied using 2-D finite-difference time-domain (FDTD) method. Singlemode resonances have been observed from a 2-μm sized hexagonal μ-pillar cavity that is selectively input-coupled. The simulated resonance wavelengths are consistent with the wavefront-matching condition based on ray-optics. The resonant field distribution has an integer number of field maxima along the cavity rim similar to whispering-gallery modes. Laterally waveguide-coupled hexagonal μ-pillar cavity channel add/drop filters with parallel and non-parallel waveguides have also been designed and simulated. Preliminary simulation of a 20-μm sized hexagonal μ-pillar cavity laterally coupled with 0.4-μm wide parallel waveguides demonstrated an extinction ratio of ≈ 8 dB, a signal/background ratio of ≈ 11 dB and a finesse of ≈ 5.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.