ScaRaB (SCAnner for RAdiation Budget) is an Indo-French satellite onboard MEGHA-TROPIQUES launched on October 12th 2011. This radiometer has been designed to fill the gap between the ERBS and CERES missions to study the water cycle and energy exchanges in the tropics. ScaRaB is fit with four parallel and independent channels: channel- 2 and channel-3 being considered as the main ones, channel-1 is dedicated to measure solar radiance while channel-4 is an infrared window. The absolute calibration of ScaRaB is achieved by internal calibration sources (black bodies and a lamp for channel-1). The radiometric properties of deserts sites and more especially their stable spectral response over time made them very good candidates to perform temporal monitoring of ScaRaB channel-1. This paper deals with the corresponding results. High altitude clouds are observed by ScaRaB to survey the balance between channel 2 and channel 3: the earth longwave radiance is isolated by subtracting the short-wave channel to the total channel. Radiometric cross calibration of Earth observation sensors is a crucial need to guarantee or quantify the consistency of measurements from different sensors. CERES and ScaRaB Earth Radiation Budget missions have the same specification: to provide an accuracy of ~1% in the measurement of short-wave and long-wave radiances and an estimation of the short-wave and long-wave fluxes less than 10 W/m2. Taking advantage of the “equatorial” orbit of Megha-Tropiques, NASA proceeded to manoeuvers on CERES-Terra in order to ease an inter-comparison between both instruments over common targets. Actually, The CERES PAPS mode was used to align its swath scan in order to increase the collocated pixels between the two instruments. The experience lasted 3 months from March 22th and May 31st 2015. A previous similar campaign has already been led in 2012. This article presents the results of these inter-comparisons, providing an indication on the temporal stability of the calibration between 2012 and 2015.
ScaRaB (SCAnner for RAdiation Budget) is the name of three radiometers whose two first flight models have been launched in 1994 and 1997. The instruments were mounted on-board Russian satellites, METEOR and RESURS. On October 12th 2011, a last model has been launched from the Indian site of Sriharikota. ScaRaB is a passenger of MEGHA-TROPIQUES, an Indo-French joint Satellite Mission for studying the water cycle and energy exchanges in the tropics. ScaRaB is composed of four parallel and independent channels. Channel-2 and channel-3 are considered as the main ones. Channel-1 is dedicated to measure solar radiance (0.5 to 0.7 μm) while channel-4 (10 to 13 μm) is an infrared window. The absolute calibration of ScaRab is assured by internal calibration sources (black bodies and a lamp for channel-1). However, during the commissioning phase, the lamp used for the absolute calibration of channel-1 revealed to be inaccurate. We propose here an alternative calibration method based on terrestrial targets. Due to the spectral range of channel-1, only calibration over desert sites (temporal monitoring) and clouds (cross band) is suitable.
Desert sites have been widely used for sensor calibration since they have a stable spectral response over time. Because of their high reflectances, the atmospheric effect on the upward radiance is relatively minimal. In addition, they are spatially uniform. Their temporal instability without atmospheric correction has been determined to be less than 1-2% over a year. Very-high-altitude (10 km) bright clouds are good validation targets in the visible and near-infrared spectra because of their high spectrally consistent reflectance. If the clouds are very high, there is no need to correct aerosol scattering and water vapor absorption as both aerosol and water vapor are distributed near the surface. Only Rayleigh scattering and ozone absorption need to be considered. This method has been found to give a 4% uncertainty.
Radiometric cross calibration of Earth observation sensors is a crucial need to guarantee or quantify the consistency of measurements from different sensors. ScaRaB is compatible with CERES mission. Two main spectral bands are measured by the radiometer: A short-wave channel (0.2 to 4 μm) dedicated to solar fluxes and a Total channel (0.2 to 200 μm) for fluxes combining the infrared earth radiance and the albedo. The earth long-wave radiance is isolated by subtracting the short-wave channel to the Total channel.
Both Earth Radiation Budget missions (CERES and ScaRaB) have the same specification: to provide an accuracy of ~1% in the measurement of short-wave and long-wave radiances and an estimation of the short-wave and long-wave fluxes less than 10 W/m2. We use the CERES PAPS and Cross-Track SSF datasets for direct radiances and fluxes comparisons during two validation phases. The first one occurred during April 17th to June 8th (51 days) in 2012 and the second one occurred between March 22th and May 31st 2015. The first validation campaign has been held with the CERES team using the Terra FM2 data. The CERES PAPS mode was used to align the swath scan, in order to increase the collocated pixels between the two instruments. This campaign allowed us to validate the ScaRaB radiances and to refine the error budget. The second validation campaign aims to provide a temporal monitoring of ScaRab calibration.
The first VIIRS instrument was launched on-board the S-NPP satellite in October 2011. It has a total of 15 reflective solar bands (RSB), which include a day-night band (DNB). The VIIRS RSB are calibrated each orbit by an on-board solar diffuser and regularly scheduled lunar observations. With a few exceptions, regularly scheduled lunar observations have been made with the same phase angles from -51.5⁰ to -50.5⁰. The PLEIADES system consists of two satellites, PLEIADES-1A and PLEIADES-1B, which were launched in December of 2011 and December of 2012, respectively. Each instrument has 5 RSB: four (blue, green, red and near-infrared) bands with a 2.8 m spatial resolution and one panchromatic band with a 70 cm vertical viewing resolution. PLEIADES RSB are calibrated using observations of Pseudo Invariant Calibration Sites (PICS) and the Moon. Both PLEIADES-1A and PLEIADES-1B lunar observations have been made over a wide range of phase angles. In this paper we provide an overview of S-NPP VIIRS and PLEIADES lunar observations and an analysis to qualify their lunar calibration differences. Results derived from different inter-comparison methodologies (or approaches) are illustrated. Also discussed in this paper are the challenging issues, lessons, and future effort to further improve sensor lunar calibration inter-comparisons.
MODIS is the key instrument for the NASA’s EOS Terra and Aqua missions, launched in late 1999 and early 2002, respectively. MODIS has 20 reflective solar bands (RSB) and 16 thermal emissive bands (TEB). MODIS RSB are calibrated on-orbit using an on-board solar diffuser and regularly scheduled lunar observations. For each instrument, the scheduled lunar observations are made through its space view (SV) port at nearly identical lunar phase angles via spacecraft roll maneuvers. Occasionally, unscheduled lunar observations at different phase angles are also collected by both Terra and Aqua MODIS. The PLEIADES system is composed of two satellites, PLEIADES-1A launched at the end of 2011 and PLEIADES-1B a year later. The PLEIADES has 5 reflective solar bands or channels (blue, green, red, nearinfrared, and panchromatic) that are calibrated on-orbit using observations of Pseudo Invariant Calibration Sites (PICS). Since launch, more than 1000 lunar images covering the phase angle range of ±115° have been acquired by PLEIADES- 1B for its on-orbit calibration and sensitivity study of lunar calibration methods. This paper provides an overview of MODIS and PLEIADES lunar observations and an assessment of their calibration difference based on lunar observations made over a range of phase angles. Also discussed in this paper are strategies and future effort that could potentially benefit other earth observing sensors and improve the calibration accuracy and consistency of existing lunar model(s).
PLEIADES is a dual Earth observation system composed of two satellites, PLEIADES-1A and PLEIADES-1B, respectively launched at the end of 2011 and 2012. This imagery system, led by CNES, has four spectral bands, blue, green, red and near infrared, with a spatial resolution of 2.8 m and a panchromatic band with a resolution of 0.7 m in vertical viewing. Its swath is about 20 km. In the framework of the PLEIADES radiometric calibration, studies took place in order to determine the calibration precision that could be reached from the acquisitions realized on the Moon. Indeed, the precisions reached from observations of calibration sites on Earth (African deserts, Antarctica, clouds, instrumented sites) are about 2-3% for most of the spectral bands in the visible and the near infrared spectra. It is very difficult to further improve this precision down to 1% because each method has its own limitations, generally due to atmospheric disturbances. In this context, the Moon seems to be an ideal calibration site: there is no atmosphere and its surface properties – thus its optical properties - are perfectly stable. Taking advantage of the high level of agility of PLEIADES, we performed an intensive observation campaign of the Moon in addition to the nominal acquisitions – when the Moon phase angle is about 40°. This intensive observation of the Moon, named POLO for Pleiades Orbital Lunar Observations, consists of a thousand acquisitions covering the phase angle range ±115 deg. The Moon was acquired as frequently as once every orbit, which represents acquisitions every 100 minutes. This paper provides an overview of these lunar experiments and an assessment of the variation of the irradiance of the Moon with phase angle. This paper also discusses a way to improve the phase angle dependence of existing lunar models.
ScaRaB (SCAnner for RAdiation Budget) is the name of three radiometers whose two first flight models have been
launched in 1994 and 1997. The instruments were mounted on-board Russian satellites, METEOR and RESURS. On
October 12th, a last model has been launched from the Indian site of Sriharikota. ScaRaB is a passenger of MEGHATROPIQUES,
an Indo-French joint Satellite Mission for studying the water cycle and energy exchanges in the tropics.
The orbit is circular inclined 20deg.
ScaRaB is compatible with CERES mission. Two main spectral bands are measured by the radiometer: A short-wave
(SW) channel (0.2 – 4 μm) dedicated to solar fluxes and a Total (Tot) channel (0.2 – 200 μm) for (total) fluxes
combining the infrared earth radiance and the albedo. The earth long-wave (LW) radiance is isolated by subtracting the
SW channel to the Total channel. Thus is defined a supplemental (virtual) channel.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.