Raman and Laser Induced Fluorescence (LIF) spectroscopic techniques were used for studying Azotobacter vinelandii- a genus of free-living diazotrophic soil bacteria. Azotobacter has generated a great deal of interest owing to their unique mode of metabolism. It is a large, obligately aerobic soil bacterium, which has one of the highest respiratory rates known among living organisms and is able to grow on a wide variety of carbohydrates, alcohols and organic acids. The Raman Scattering of Azotobacter, incubated with gold nanoparticles, was examined with 532-nm as an excitation laser wavelength. The basic instrumentation for characterizing the bacteria by Raman spectroscopy employed a continuous wave (CW) frequency doubled Nd: YAG laser (532-nm) and a modified In-Photonics fiber optic state-of-art miniaturized Raman Probe. The surface enhancement effects allowed the observation of Raman spectra of such bacterial cells, and were excited in the visible region of wavelength at low incident power for minimum sample degradation. LIF spectra of Azotobacter were measured with a 410-nm CW diode laser as an excitation source, and a reflection probe to deliver laser beam on the sample and collect the LIF signal from the sample. Spectral contrast observed in gold particles conjugated bacteria, from nitrogen fixing and non-nitrogen fixing condition was analyzed for characterizing the bacteria cells, and the results are presented in the paper.
We report here that the hyper-Rayleigh scattering (HRS) technique which has emerged over the past decade as a powerful method to determine the microscopic non-linear optical (NLO) properties of species in solution, can be used to achieve the ultra-sensitive detection of single base-pair mismatch in oligonucleotide strands without any modification of DNA. A very distinct HRS intensity change has been observed after hybridization even at the concentration of 15 nano-molar probe ss-DNA. The HRS intensity enhanced by a factor of 20 after hybridization. The HRS intensity did not change when we added the target DNA with one base-pair mismatch with respect to probe DNA. Size dependent optical absorption and hyper Rayleigh scattering properties have been measured. The mechanism of size and distant dependence HRS intensity changed has been discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.