The CUbesat Solar Polarimeter (CUSP) project aims to develop a constellation of two CubeSats orbiting the Earth to measure the linear polarization of solar flares in the hard X-ray band by means of a Compton scattering polarimeter on board of each satellite. CUSP will allow to study the magnetic reconnection and particle acceleration in the flaring magnetic structures. CUSP is a project approved for a Phase B study by the Italian Space Agency in the framework of the Alcor program aimed to develop CubeSat technologies and missions. In this paper we describe the a method for a multi-physical simulation analysis while analyzing some possible design optimization of the payload design solutions adopted. In particular, we report the mechanical design for each structural component, the results of static and dynamic finite element analysis, the preliminary thermo-mechanical analysis for two specific thermal cases (hot and cold orbit) and a topological optimization of the interface between the platform and the payload.
The CUbesat Solar Polarimeter (CUSP) project is a future CubeSat mission orbiting the Earth aimed to measure the linear polarization of solar flares in the hard X-ray band, by means of a Compton scattering polarimeter. CUSP will allow us to study the magnetic reconnection and particle acceleration in the flaring magnetic structures of our star. The project is in the framework of the Italian Space Agency Alcor Program, which aims to develop new CubeSat missions. CUSP is approved for a Phase B study that will last for 12 months, starting in mid-2024. We report on the current status of the CUSP mission project as the outcome of the Phase A.
X-ray polarimetry of solar flares is still a not well established field of observation of our star. Past polarimeters were not able to measure with a high significance the polarization in X-rays from solar flares. Moreover, they had no imaging capabilities and measured only the polarization by integrating on all the image of the source. We propose a mission concept based on a gas photoelectric polarimeter, coupled with multilayer lobster-eye optics, to perform imaging-spectro-polarimetry of solar flares while monitoring the entire solar disc.
The CUbesat Solar Polarimeter (CUSP) project is a CubeSat mission orbiting the Earth aimed to measure the linear polarization of solar flares in the hard X-ray band by means of a Compton scattering polarimeter. CUSP will allow the study of the magnetic reconnection and particle acceleration in the flaring magnetic structures of our star. CUSP is a project in the framework of the Alcor Program of the Italian Space Agency aimed at developing new CubeSat missions. It is approved for a Phase B study. In this work, we report on the characterization of the Avalanche Photodiodes (APDs) that will be used as readout sensors of the absorption stage of the Compton polarimeter. We assessed the APDs gain and energy resolution as a function of temperature by irradiating the sensor with a 55Fe radioactive source. Moreover, the APDs were also characterized as being coupled to a GAGG scintillator.
The CubeSat solar polarimeter (CUSP) project aims to develop a constellation of two CubeSats orbiting the Earth to measure the linear polarisation of solar flares in the hard x-ray band by means of a Compton scattering polarimeter on board of each satellite. CUSP will allow to study the magnetic reconnection and particle acceleration in the flaring magnetic structures. CUSP is a project approved for a Phase A study by the Italian Space Agency in the framework of the Alcor program aimed to develop CubeSat technologies and missions.
The Pixelated silicon Drift Detector (PixDD) is a two-dimensional multi-pixel X-ray sensor based on the technology of Silicon Drift Detectors, designed to solve the dead time and pile-up issues of photon-integrating imaging detectors. Read out by a two-dimensional self-triggering Application-Specific Integrated Circuit named RIGEL, to which the sensor is bump-bonded, it operates in the 0:5 — 15 keV energy range and is designed to achieve single-photon sensitivity and good spectroscopic capabilities even at room temperature or with mild cooling (< 150 eV resolution at 6 keV at 0 °C). The paper reports on the design and performance tests of the 128-pixel prototype of the fully integrated system.
This paper assesses the response to radiation effects of the RIGEL, the Application Specific Integrated Circuit developed within the framework of the PixDD project, to be coupled with a multi-pixel sensor based on Silicon Drift Detectors for operation at the focal plane of X-ray optics on board space-borne astronomy missions. The campaign was conducted at the heavy ion beam line of the Radiation Effects Facility of the University of Jyvӓskylӓ (Finland): both the response to Single Event Effects (latch-ups and bit flips) and to Total Ionising Dose was evaluated. Experimental data were combined with simulations of the in-orbit environment for two scenarios: an equatorial and a Sun-synchronous orbit. The study demonstrated that the device can be safely operated on an equatorial orbit without any dedicated circuitry to mitigate Single Event Effects, although this precaution is instead advisable in the case of a Sun-synchronous orbit. Spectroscopic degradation resulting from Total Ionising Dose stays below 10% up to 34 krad, a manageable value for both orbital configurations.
Launched on 2021 December 9, the Imaging X-ray Polarimetry Explorer (IXPE) is a NASA Small Explorer Mission in collaboration with the Italian Space Agency (ASI). The mission will open a new window of investigation—imaging x-ray polarimetry. The observatory features three identical telescopes, each consisting of a mirror module assembly with a polarization-sensitive imaging x-ray detector at the focus. A coilable boom, deployed on orbit, provides the necessary 4-m focal length. The observatory utilizes a three-axis-stabilized spacecraft, which provides services such as power, attitude determination and control, commanding, and telemetry to the ground. During its 2-year baseline mission, IXPE will conduct precise polarimetry for samples of multiple categories of x-ray sources, with follow-on observations of selected targets.
IXPE (Imaging X-ray Polarimetry Explorer) is the next Nasa Small Explorer mission foreseen for the lunch in 2021. It is a partnership with the Italian Space Agency (ASI). IXPE is devoted to X-ray polarimetry in the 2-8 keV energy band. The IXPE telescope comprises three grazing incidence mirror modules coupled to three detector units hosting each one a Gas Pixel Detector (GPD) polarimeter. The GPD exploits the photoelectric effect to measure the linear polarization of the X-ray emission from astrophysical sources. A wide and accurate on ground calibration was carried out on the IXPE detector units at INAF-IAPS in Italy. A dedicated facility was set-up to calibrate the detector units with polarized and unpolarised X-rays at different energies before Instrument integration.
IXPE (Imaging X-ray Polarimetry Explorer) is a NASA SMEX in a partnership with ASI. The focal plane Detector Units (DUs) and the Detector Service Unit (DSU) were developed by the Italian research Institutes INAF-IAPS and INFN and were manufactured by OHB-I. IXPE will investigate X-ray polarimetry in the 2-8 keV energy band. The payload comprises three identical telescopes, each composed of a mirror and a detector unit with an X-ray polarimeter based on the Gas Pixel Detector (GPD). A stray-light collimator (SLC) is mounted on the top of the DU to shield the GPD from background X-rays not coming from the optics. At the bottom of the SLC, an ions-UV filter is mounted to reduce the thermal load and to prevent ions and UV from entering the DU. The ions-UV filters consist mainly of 1 um LUXFilm (based on polyimide). During on-ground calibration activities of the IXPE DUs, X-ray transparency of DU-FM ions-UV filters was measured with monochromatic X-ray at 2.7 keV and 6.4 keV at INAF-IAPS.
IXPE, the Imaging X-ray Polarimetry Explorer, is a NASA SMEX mission with an important contribution of ASI that will be launched with a Falcon 9 in 2021 and will reopen the window of X-ray polarimetry after more than 40 years. The payload features three identical telescopes each one hosting one light-weight X-ray mirror fabricated by MSFC and one detector unit with its in-orbit calibration system and the Gas Pixel Detector sensitive to imaging X-ray polarization fabricated by INAF/IAPS, INFN and OHB Italy. The focal length after boom deployment from ATK-Orbital is 4 m, while the spacecraft is being fabricated by Ball Aerospace. The sensitivity will be better than 5.5% in 300 ks for a 1E-11 erg/s/cm2 (half mCrab) in the energy band of 2-8 keV allowing for sensitive polarimetry of extended and point-like X-ray sources. The focal plane instrument is completed, calibrated and it is going to be delivered at MSFC. We will present the status of the mission at about one year from the launch.
The NASA/ASI imaging x-ray polarimetry explorer, which will be launched in 2021, will be the first instrument to perform spatially resolved x-ray polarimetry on several astronomical sources in the 2- to 8-keV energy band. These measurements are made possible owing to the use of a gas pixel detector (GPD) at the focus of three x-ray telescopes. The GPD allows simultaneous measurements of the interaction point, energy, arrival time, and polarization angle of detected x-ray photons. The increase in sensitivity, achieved 40 years ago, for imaging and spectroscopy with the Einstein satellite will thus be extended to x-ray polarimetry for the first time. The characteristics of gas multiplication detectors are subject to changes over time. Because the GPD is a novel instrument, it is particularly important to verify its performance and stability during its mission lifetime. For this purpose, the spacecraft hosts a filter and calibration set (FCS), which includes both polarized and unpolarized calibration sources for performing in-flight calibration of the instruments. We present the design of the flight models of the FCS and the first measurements obtained using silicon drift detectors and charge-coupled device cameras, as well as those obtained in thermal vacuum with the flight units of the GPD. We show that the calibration sources successfully assess and verify the functionality of the GPD and validate its scientific results in orbit; this improves our knowledge of the behavior of these detectors in x-ray polarimetry.
The Imaging X-ray Polarimetry Explorer (IXPE) will add polarization to the properties (time, energy, and position) observed in x-ray astronomy. A NASA Astrophysics Small Explorer (SMEX) in partnership with the Italian Space Agency (ASI), IXPE will measure the 2–8-keV polarization of a few dozen sources during the first 2 years following its 2021 launch. The IXPE Observatory includes three identical x-ray telescopes, each comprising a 4-m-focal-length (grazingincidence) mirror module assembly (MMA) and a polarization-sensitive (imaging) detector unit (DU), separated by a deployable optical bench. The Observatory’s Spacecraft provides typical subsystems (mechanical, structural, thermal, power, electrical, telecommunications, etc.), an attitude determination and control subsystem for 3-axis stabilized pointing, and a command and data handling subsystem communicating with the science instrument and the Spacecraft subsystems.
IXPE scientific payload comprises of three telescopes, each composed of a mirror and a photoelectric polarimeter based on the Gas Pixel Detector design. The three focal plane detectors, together with the unit which interfaces them to the spacecraft, are named IXPE Instrument and they will be built and calibrated in Italy; in this proceeding, we will present how IXPE Instrument will be calibrated, both on-ground and in-flight. The Instrument Calibration Equipment is being finalized at INAF-IAPS in Rome (Italy) to produce both polarized and unpolarized radiation, with a precise knowledge of direction, position, energy and polarization state of the incident beam. In flight, a set of four calibration sources based on radioactive material and mounted on a filter and calibration wheel will allow for the periodic calibration of all of the three IXPE focal plane detectors independently. A highly polarized source and an unpolarized one will be used to monitor the response to polarization; the remaining two will be used to calibrate the gain through the entire lifetime of the mission.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.