Joining of materials becomes an issue, when high stability at large temperature variation is required. Stress from thermal mismatch of auxiliary materials and corresponding distortions are often unavoidable. We describe the use of two inorganic bonding technologies for joining low thermal expansion glasses. The techniques of silicate and direct bonding were applied to join ultra-low thermal expansion glass elements of 150 mm diameter to from light-weight and high precision opto-mechanical compounds. Related bond strengths were investigated on separate reference specimen. Dimensional stability of the bonded systems during thermal cycling in vacuum was investigated by Fizeau interferometry at temperatures between 78 K and 335 K with high accuracy. The results illustrate the great potential of both bonding technologies for glass based precision engineering applications to be used under highly demanding environmental conditions, like in space.
For spaceborne lidar like the atmospheric backscatter lidar (e.g. ATLID on the ESA EarthCARE mission) highly reliable and efficient laser sources are needed. As pre-development model we realized a Nd:YAG MOPA diode pumped at 100 Hz. With more than 21 % optical-optical efficiency the amplifier based on the InnoSlab design raises the 8 mJ pulse energy from the single frequency rod oscillator to more than 70 mJ. Frequency-tripling leads to more than 25 mJ at 355 nm and a beam quality of M2 < 1.7. The total optical-optical efficiency of more than 7.5 % exceeds the efficiency of comparable current lidar transmitter systems at least by a factor of 2. The laser is designed to cope with diode degradation or failure. Moderate pulse intensities in the InnoSlab amplifier offer excellent possibilities to scale the pulse energy to several 100 mJ in a most reliable and efficient way.
A cw diode-pumped Nd:YVO4 laser system was developed which is capable of delivering 10 W of average power at high repetition rates of more than 20 kHz. Longitudinally fiber- and simultaneous side-pumping is used for a compact, electrooptically Q-switched laser oscillator producing stable pulses with widths ranging from 5 to 15 ns, and a nearly Gaussian beam profile. The radiation of the oscillator is efficiently amplified by a small, longitudinally fiber- pumped double-pass amplifier.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.