Modern amorphous silicon flat panel-based electronic portal imaging devices that utilize thin gadolinium oxysulfide scintillators suffer from low quantum efficiencies (QEs). Thick two dimensionally (2D) pixelated scintillator arrays offer an effective but expensive option for increasing QE. To reduce costs, we have investigated the possibility of combining a thick one dimensional (1D) pixelated scintillator (PS) with an orthogonally placed 1D structured optical filter to provide for overall good 2D spatial resolution. In this work, we studied the potential for using a 1D video screen privacy film (PF) to serve as a directional optical attenuator and filter. A Geant4 model of the PF was built based on reflection and transmission measurements taken with a laser-based optical reflectometer. This information was incorporated into a Geant4-based x-ray detector simulator to generate modulation transfer functions (MTFs), noise power spectra (NPS), and detective quantum efficiencies (DQEs) for various 1D and 2D configurations. It was found that the 1D array with PF can provide the MTFs and DQEs of 2D arrays. Although the PF significantly reduced the amount of optical photons detected by the flat panel, we anticipate using a scintillator with an inherently high optical yield (e.g. cesium iodide) for MV imaging, where fluence rates are inherently high, will still provide adequate signal intensities for the imaging tasks associated with radiotherapy.
In a common clinical setting, conventional absorption-based imaging provides relatively good contrast between bonelike and soft-tissue materials. The reliability of material differentiation, however, is hampered when materials with similar absorption properties are scanned. This problem can be addressed by utilizing a spectral imaging technique whereby multiple X-ray measurements are taken at different beam conditions. In this work, we discuss the possibility of using a spectral imaging approach in a grating-based, differential-phase contrast-imaging (DPCI) modality. Two approaches, dual exposure with a conventional flat-panel detector (FPD) and a single exposure with a photon-counting energy-resolving detector (PCD), were reviewed. The feasibility of a single-exposure DPCI and a two-bin PCD setup was assessed quantitatively by a least-squares minimization algorithm applied to an X-ray diffraction pattern. It was shown that a two-peak-shaped X-ray spectrum can allow PCDs to be placed unambiguously at single Talbot distances making it possible to simultaneously detect photons in each energy bin with comparable efficiencies. The results of this work can help build a bridge between two rapidly developing imaging modalities, X-ray spectral imaging and X-ray DPCI.
Material decomposition in absorption-based X-ray CT imaging suffers certain inefficiencies when differentiating among soft tissue materials. To address this problem, decomposition techniques turn to spectral CT, which has gained popularity over the last few years. Although proven to be more effective, such techniques are primarily limited to the identification of contrast agents and soft and bone-like materials. In this work, we introduce a novel conditional likelihood, material-decomposition method capable of identifying any type of material objects scanned by spectral CT. The method takes advantage of the statistical independence of spectral data to assign likelihood values to each of the materials on a pixel-by-pixel basis. It results in likelihood images for each material, which can be further processed by setting certain conditions or thresholds, to yield a final material-diagnostic image. The method can also utilize phase-contrast CT (PCI) data, where measured absorption and phase-shift information can be treated as statistically independent datasets. In this method, the following cases were simulated: (i) single-scan PCI CT, (ii) spectral PCI CT, (iii) absorption-based spectral CT, and (iv) single-scan PCI CT with an added tumor mass. All cases were analyzed using a digital breast phantom; although, any other objects or materials could be used instead. As a result, all materials were identified, as expected, according to their assignment in the digital phantom. Materials with similar attenuation or phase-shift values (e.g., glandular tissue, skin, and tumor masses) were especially successfully when differentiated by the likelihood approach.
Phase contrast imaging (PCI) technology has emerged over the last decade as a novel imaging technique capable of
probing phase characteristics of an object as complimentary information to conventional absorption properties. In
this work, we identified and provided a rationale for optimization of key parameters that determine the performance
of a Talbot-Lau PCI system. The study used the Fresnel wave propagation theory and system geometry to predict
optimal grating alignment conditions necessary for producing maximum-phase contrast. The moiré fringe pattern
frequency and angular orientation produced in the X-ray detector plane were studied as functions of the gratings’
axial rotation. The effect of axial displacement between source-to-phase (L) and phase-to-absorption (d) gratings, on
system contrast, was discussed in detail. The L-d regions of highest contrast were identified, and the dependence of
contrast on the energy of the X-ray spectrum was also studied. The predictions made in this study were tested
experimentally and showed excellent agreement. The results indicated that the PCI system performance is highly
sensitive to alignment. The rationale and recommendations made should serve as guidance in design, development,
and optimization of Talbot-Lau PCI systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.