Elizaveta Elistratova, Thomas Kelly, Ian Davidson, Jaroslaw Rzegocki, Ghafour Amouzad Mahdiraji, Somarpita Pradhan, Austin Taranta, Francesco Poletti, Radan Slavik, Peter Horak, Natalie Wheeler
After fabrication, the gas pressure inside the core and cladding of hollow-core fibres is significantly below atmospheric pressure. If such an “as-drawn” fibre is then exposed to the atmosphere, pressure-driven flow will push gas from the surrounding environment into the core and cladding holes at different rates, affecting its performance. We use optical time-domain reflectometry to study the length-distributed gas flow dynamics in an as-drawn double-nested antiresonant nodeless fibre (DNANF). For the first time, we show measurement of the initial “as-drawn" pressure distribution along the fibre length and its subsequent evolution over time. Experimental measurements are then compared with gas flow simulations, to enable prediction of pressure equalisation times.
We present the use of holographic UV writing to fabricate 2D grating couplers in doped planar silica-on-silicon, enabling the creation of large (~1 cm) and efficient circular beam delivery into free space. Our fabrication process inscribes a channel waveguide with in-plane 60° blazed grating to expand a fibre-coupled beam within a planar core layer, followed by an out-of-plane 45° blazed grating to couple light out of the substrate. Our out-of-plane gratings are fabricated using a modified interferometric arrangement with a prism and index matching water layer, the arrangement and latest results will be presented here.
This conference presentation, “Multimode effects in nonlinear fibre optics: from telecommunications to high-harmonic generation” was presented at the Nonlinear Optics and its Applications 2022 conference at SPIE Photonics Europe 2022.
We demonstrate transient changes in the optical properties, specifically the loss, of antiresonant hollow core fibres (HCFs) due to a combination of the sub-atmospheric gas pressure inside the fibre holes post-fabrication and the subsequent gas induced differential refractive index (GDRI) between the core and cladding elements of the fibre; this is temporarily created while the gas pressures inside the core and cladding elements are evolving after the HCF ends are opened up to surrounding atmospheric pressure. Here we show experimental evidence of this effect in two different HCF designs; for both fibres, the transmitted power initially increases, reaches a maximum, and then reduces to its initial level. We show via gas flow simulations that the timeline of this behaviour is consistent with the gas flow rates into the core and cladding elements of the tubular HCF studied and the subsequent transient differential gas pressure. The experimental results also show (in line with GDRI expectations) that this transmission (loss) change is higher at shorter wavelengths. Our results imply that this transient change in the fibre’s optical properties must be considered for accurate fibre characterisation; this is particularly true for long fibre lengths where the equalisation of the fibre’s internal gas pressure with atmospheric pressure could take many weeks.
High harmonic generation (HHG) provides a table-top source of extreme ultraviolet (XUV) and soft x-ray radiation. HHG pump-wavelength dependence is of significant practical interest for laser system design as HHG efficiency scales with pump wavelength to the power of P. First experiments suggested P=-6.5 while theoretical models predict P=-4.7 to -6.0. These investigations exploited single-atom models; insight into efficiencies for full experimental setups will further guide HHG laser designs.
We developed a model that simulates the HHG process in full for an argon-filled capillary including all Ti:sapphire pump pulse and XUV propagation effects. With this we compare HHG of two geometries: a thin slice of argon, and an argon-filled capillary.
For the thin slice with pump wavelengths 820-1890nm we found P=-4.5 scaling when the harmonic energies were integrated between 16 and 45eV. However, further analysis revealed a dependence of P=-6.4 for longer pump wavelengths (1500-1890nm), but P=-4.0 for shorter wavelengths (820-1500nm). By contrast, HHG in a 7-cm long capillary was found to scale with P=-3.4 (800-1850nm). We attribute this to phase-matching effects over longer propagation distances and nonlinear pump propagation distorting the pulse.
Different scaling is observed when the energy of a single harmonic is calculated. In the thin slice the energy in the first harmonic above 20eV yields P=-6.1 (820-1890nm), P=-5.7 (820-1500nm), and P=-7.8 (1500-1890nm). For the whole capillary the corresponding value is P=-4.1 (800-1850nm).
High-energy harmonics also exhibit very different scaling with pump wavelength as they cross the classical harmonic cutoff energy. For example, for the first harmonic beyond 41eV no value of P provides a good fit to the simulated HHG efficiencies, neither for the thin slice nor the whole capillary.
Our simulations highlight pump-wavelength dependence of HHG efficiency is complex, with many contributing factors such as exact experimental geometry, optical nonlinearity, phase matching, and classical cutoff.
We propose a taper design for a silicon-core fiber for the purpose of generating a supercontinuum (SC) from a 2.1μm pulsed fiber laser. The design is tailored to maximise the conversion efficiency (CE) to the 3-4μm region, which is important for environmental sensing as it includes several key greenhouse gas absorption lines.
There is a need for compact, low-power and efficient solutions. Aluminium nitride photonic-chip waveguides have been shown to generate 0.3mW in the 3-4μm region with an 80mW input. Although this is sufficient power for some applications, the system only offers a 0.4% CE. More recently a silicon nitride planar waveguide was used to transfer energy from a commercial 2.1μm femtosecond laser to targeted wavelengths in the 3-4μm region through dispersive wave generation. To cover the entire region, it is estimated that an input of 40mW would be needed to generate ~1mW (CE of 2.5%).
Compared to these materials silicon has a higher nonlinearity and, despite multi-photon absorption, is highly efficient at transferring energy to different wavelengths with modest input powers. Moreover, silicon-core fibers can be tapered using established post-processing procedures, which can be used to control the phase-matching conditions to concentrate energy in a required wavelength range.
We have designed a silicon-core fiber taper that can take the input from a 2.1μm fiber laser and efficiently transfer the energy to cover the entire 3-4μm range.
We simulated SC generation using the generalised nonlinear Schrödinger equation including wavelength-dependent loss terms (linear, TPA and 3PA). From these simulations we estimate that ~0.8mW average power can be generated covering the entire 3-4μm region, with only 15mW input power, a CE of 5%.
We propose and numerically simulate a new and highly compact integrated 4x4 mode coupler based
on two single-mode waveguides exploiting both forward and backward propagating directions to double the number of modes. The two parallel waveguides are coupled via long and short-period gratings to the co- and
counterpropagating directions, respectively, of a single cladding mode of the device which acts as a
bus between the waveguides. By connecting all end facets to optical circulators we construct a
device with four input and output ports but only using two single-mode waveguides.
Such a device can be fabricated in a single micromachined silica ridge structure. A photosensitive
raised index layer is used for vertical confinement that supports multiple modes horizontally. We
UV-write the waveguides and the Bragg gratings and provide a tilt angle to improve coupling. We
have demonstrated this technology before for a polarizing waveguide-to-waveguide coupler and
have simulated other unidirectional devices.
We use coupled mode theory to simulate the system. By tailoring the grating parameters, we can
achieve a wide variety of coupling ratios. Analytically, we find a set of solutions in which no light
escapes via the cladding modes through the ends of the device and we have calculated device
parameters to achieve a wide range of splitting ratios including coupling light from one input port
equally into all output ports. Moreover, we derived analytically a set of parameters to implement a
Walsh-Hadamard transformation and are investigating further options to implement a universal 4x4
mode-coupler on this platform. We envisage that the device can be used for quantum information
processing where two qubits are encoded in the waveguides using a photon in each propagation
direction.
We show the characterisation of spectral broadening in the Tantalum Pentoxide waveguide system as a function of pump wavelength, showing spectra for central pump wavelengths of 0.9 to 1.5 um (150 fs, 80 MHz). We have achieved octave spanning spectra with approximately 5 mW of laser power coupled in the waveguide at 1 um pumping wavelength for a linear buried waveguide using a commercial source.
In recent years there has been rapid progress into realising a working universal quantum computer, in particular with the development of chip-based radio frequency ion traps. The next significant leap will come with successfully integrating optical cavities into these ion traps to allow for interaction between remote ions via photons as required for more efficient and scalable quantum networking schemes. Fibre-tip cavities are especially interesting for such applications as they enable highly efficient coupling of photons from the cavity into optical fibres for onward transmission.
Here we analyse theoretically and numerically the effects of parallel off-axial misalignment in millimetre scale optical Fabry-Perot cavities. While near-concentric cavity configurations produce the smallest mode waist and thus strongest coupling to a trapped ion, their mode is extremely sensitive to misalignment. Shorter cavities exhibit more robust modes, but at the cost of larger mode waists. For example, for typical experimental parameters (mirror radius of curvature 0.7 mm, mirror diameter 0.140 mm, operation wavelength 850 nm) we find that the cavity lifetime is reduced by a factor 1/e for a misalignment of 0.95 nm for a beam waist of 2.91 um (cavity length of 1.397 mm), which increases to 11.0 nm for a waist of 4.33 um (length of 1.386 mm), and 3.12 um for a waist of 7.38 um (length of 1.273 mm). In the parameter regimes of interest, we derive a simple relation between cavity length, mirror radius, and misalignment sensitivity. Finally, we also consider the effect of mode matching of the misaligned cavity mode with the optical mode of the fibre for efficient cavity to fibre coupling.
In conclusion, our model allows us to optimise photon-ion coupling in fibre-tip resonators for quantum information processing in the presence of finite fabrication and alignment tolerances.
We investigate geometries for efficient coupling of single ions to fiber-coupled light fields for applications in quantum sensing, quantum metrology, and quantum information processing. Specifically, we discuss the integration of fiber-tip microcavities into radio-frequency ion traps. The distortions of the trapping fields induced by the presence of the optical fibers are simulated for a range of ion trap geometries and the most promising arrangements are identified. Finally, we investigate the use of fiber-tip microcavities with non-spherical mirrors for enhanced ion-light coupling at the center of the trap by appropriate shaping of the cavity modes.
We have demonstrated Raman frequency conversion and supercontinuum light generation in a hollow core Kagomé fiber filled with air at atmospheric pressure, and developed a numerical model able to explain the results with good accuracy. A solid-state disk laser was used to launch short pulses (~6ps) at 1030nm into an in-house fabricated hollow core Kagomé fiber with negative core curvature and both ends were open to the atmosphere. The fiber had a 150 THz wide transmission window and a record low loss of ~12 dB/km at the pump wavelength. By gradually increasing the pulse energy up to 250 μJ, we observed the onset of different Kerr and Raman based optical nonlinear processes, resulting in a supercontinuum spanning from 850 to 1600 nm at maximum input power. In order to study the pulse propagation dynamics of the experiment, we used a generalized nonlinear Schrödinger equation (GNLSE). Our simulations showed that the use of a conventional damping oscillator model for the time-dependent response of the rotational Raman component of air was not accurate enough at such high intensities and large pulse widths. Therefore, we adopted a semiquantum Raman model for air, which included the full rotational and vibrational response, and their temperature-induced broadening. With this, our GNLSE results matched well the experimental data, which allowed us to clearly identify the nonlinear phenomena involved in the process. Aside from the technological interest in the high spectral density of the supercontinuum demonstrated, the validated numerical model can provide a valuable optimization tool for gas based nonlinear processes in air-filled fibers.
While hollow core-photonic crystal fibres are now a well-established fibre technology, the majority of work on these speciality fibres has been on designs with a single core for optical guidance. In this paper we present the first dual hollow-core anti-resonant fibres (DHC-ARFs). The fibres have high structural uniformity and low loss (minimum loss of 0.5 dB/m in the low loss guidance window) and demonstrate regimes of both inter-core coupling and zero coupling, dependent on the wavelength of operation, input polarisation, core separation and bend radius. In a DHC-ARF with a core separation of 4.3 μm, we find that with an optimised input polarisation up to 65% of the light guided in the launch core can be coupled into the second core, opening up applications in power delivery, gas sensing and quantum optics.
UV generation via four-wave-mixing (FWM) in optical microfibres (OMFs) was demonstrated. This was achieved by exploiting the tailorable dispersion of the OMF in order to phase match the propagation constant of the four frequencies involved in the FWM process. In order to satisfy the frequency requirement for FWM, a Master Oscillator Power Amplifier (MOPA) working at the telecom C-band was connected to a periodically poled silica fibre (PPSF), producing a fundamental frequency (FF) at 1550.3 nm and a second harmonic (SH) frequency at 775.2 nm. A by-product of this second harmonic generation is the generation of a signal at the third harmonic (TH) frequency of 516.7 nm via degenerate FWM. This then allows the generation of the fourth harmonic (FH) at 387.6 nm and the fifth harmonic (5H) at 310nm via degenerate and nondegenerate FWM in the OMF.The output of the PPSF was connected to a pure silica core fibre which was being tapered using the modified flame brushing technique from an initial diameter of 125 μm to 0.5 μm. While no signal at any UV wavelength was initially observed, as the OMF diameter reached the correct phase matching diameters, signals at 387.6 nm appeared. Signals at 310 nm also appeared although it is not phase matched, as the small difference in the propagation constant is bridged by other nonlinear processes such as self-phase and cross phase modulation.
We present the design and fabrication of a dual air-bridge waveguide structure integrated with MEMS functionality. The structure is designed to function as a tunable optical buffer for telecommunication application.
The optical buffer structure is based on two parallel waveguides made of high refractive index material with subwavelength dimensions. They are suspended in air, and are separated by a sub-micron air gap. Due to the fact that the size of the waveguides is much smaller than the wavelength of light that propagates in the structure, a significant fraction of the optical mode is in the air gap between the waveguides. By changing the size of the air gap using MEMS techniques, we can vary this fraction and hence the effective refractive index of the waveguide structure, thus generating tunable optical delay.
The optical buffer structure was grown on an InP substrate by molecular beam epitaxy, and the device layer was made of InGaP. An InGaAs layer was sandwiched between the device layer and the substrate to serve as a sacrificial layer. The sub-micron waveguides, their supports in the form of side pillars with tapered shapes in order to minimize optical losses, and the MEMS structures were patterned using electron beam lithography and plasma etching. Electrodes were integrated into the structure to provide electrostatic actuation. After the sample patterning, the waveguide structure was released using HF etch. Our simulations predict that by varying the waveguide separation from 50 nm to 500 nm, we could achieve a change in propagation delay by a factor of two.
We present the design and fabrication of a tunable optical buffer device based on III-V semiconductor platform for
telecommunication applications. The device comprises two indium phosphide suspended parallel waveguides with cross
sectional dimension of 200 nm by 300 nm, separated by an air gap. The gap between the waveguides was designed to be
adjustable by electrostatic force. Our simulation estimated that only 3 V is required to increase the separation distance
from 50 nm to 500 nm; this translates to a change in the propagation delay by a factor of 2. The first generation of the
suspended waveguide structure for optical buffering was fabricated. The sample was grown on an InP substrate by
molecular beam epitaxy. The waveguide pattern is written onto a 300 nm thick InP device layer by electron beam
lithography and plasma etching. Electrodes were incorporated into the structure to apply voltages for MEMS actuation.
We investigate theoretically and experimentally the possibility of electrostatic actuation of nanomechanical optical fibers with integrated electrodes. The fiber has two optically guiding cores suspended in air by thin flexible membranes. This fiber structure allows for control of the optical properties via nanometer-range mechanical core movements. The electrostatic actuation of the fiber is generated by electrically charged electrodes embedded in the fiber cladding. Fiber designs with one to four electrodes are analyzed and, in particular, a quadrupole geometry is shown to allow for all-fiber optical switching in a 10cm fiber with an operating voltage of 25 - 30V. A multi-material fiber draw technique is demonstrated to fabricate a fiber with well-defined dual core structure in the middle and four continuous metal electrodes in the cladding. The fabricated fiber is analyzed and compared with the modeled requirements for electrostatic actuation.
We present a scattering model which enables us to describe the mechanical force, including the velocity dependent
component, exerted by light on polarizable massive objects in a general one-dimensional optical system. We show
that the light field in an interferometer can be very sensitive to the velocity of a moving scatterer. We construct
a new efficient cooling scheme, 'external cavity cooling', in which the scatterer, that can be an atom or a moving
micromirror, is spatially separated from the cavity.
We report recent advances in the development of fibers for the delivery and generation of both single-mode and heavily
multimode laser beams as well as recent progress in fibers for supercontinuum generation in spectral regimes spanning
the visible to mid-IR.
Whispering gallery modes of a microdisk resonator are useful for the optical detection of single rubidium and cesium atoms near the surface of a substrate. Light is coupled into two high-Q whispering-gallery modes of the disk which can provide attractive and/or repulsive potentials, respectively, via their evanescent fields. The sum potential, including van der Waals/Casimir-Polder surface forces, may be tuned to exhibit a minimum at distances on the order of 100 nm from the disk surface. Simultaneously optically trapping and detecting is possible, with the back-action of an atom held in this trap on the light fields being suffciently strong to provide a measurable effect. Atom trapping and detection depend on a variety of system parameters and experimental realizations differ for different atoms.
We report the generation of white light comprising red, green, and blue spectral bands from a frequency-doubled
fiber laser in submicron-sized cores of microstructured holey fibers. Picosecond pulses of green light are launched
into a single suspended core of a silica holey fiber where energy is transferred by an efficient four-wave mixing
process into a red and blue sideband whose wavelengths are fixed by birefringent phase matching due to a slight
asymmetry of the structure arising during the fiber fabrication. Numerical models of the fiber structure and
of the nonlinear processes confirm our interpretation. Finally, we discuss power scaling and limitations of this
white light source.
The Q-factor of the optical nanowire microcoil resonator is calculated and compared for different geometries. The results suggest that the Q-factor is very sensitive to the coupling conditions and high-Q resonators can be obtained more easily when the geometry of the nanowire microcoil resonator or its coupling contour has a bi-conical profile.
We investigate simultaneous optical trapping and optical detection of a single Rb atom near the
surface of a toroidal microdisk. Light is coupled into two high-Q whispering-gallery modes of the
disk which provide attractive and repulsive potentials, respectively, via their evanescent fields. The
sum potential including van-der-Waals and Casimir-Polder surface forces exhibits a minimum at
distances of the order of 100 nm from the disk surface. The back-action of an atom held in this trap on the light fields is sufficiently strong to provide a measurable effect. We discuss atom trapping
and detection properties in dependence on a variety of system parameters.
The anomalous linewidth behavior in a DFB fiber laser is investigated. It is shown that not only does the linewidth deviate drastically from the Schawlow-Townes linewidth formula by increasing with pump and laser power, but it also varies significantly with the pumping configuration used. These results have potentially important implications for the design and operation of such fiber lasers.
KEYWORDS: Waveguides, Chemical species, Resonators, Finite-difference time-domain method, Refractive index, Scattering, Waveguide modes, Light scattering, Silica, Signal to noise ratio
We investigate the bound and evanescent fields of the optical whispering gallery modes which are supported by a toroid microcavity and which may be used for a wide range of applications. Results of simulations using finite-difference time domain solutions of Maxwell's equations are compared with semi-analytical solutions based on coupled mode theory. Key parameters such as resonance frequencies, transmittance characteristics, coupling efficiencies, and bending/scattering losses are analyzed as a function of experimental variables such as size, distance, and fabrication roughness. Finally, the feasibility of single-atom detection is discussed.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.