The Prime Focus
Spectrograph (PFS) survey will target the same patch of sky from several dozens
to 100 times. The problem of allocating PFS' 2394 fibers to objects over many
visits of a field is a highly non-trivial optimization problem. Our network
flow approach models the fiber allocation as a generalized network
min-cost/max-flow problem.
This methodology is inspired by SDSS, but extends this to address the
variety of requirements of the the PFS survey. Ultimately, we
solve the network flow through linear programming. This generally provides
a very good solution in reasonable amounts of time and can give a clear
quantitative measure of just “how good it is”. It allows us to define an arbitrary number of target classes with different
weights, to enforce constraints on the target distribution,
and to put caps to the number of observed objects per class.
We will present the methodology and the implementation of our approach.
PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~ 1.6-2.7Å. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project recently started undertaking the commissioning process of a subsystem at the Subaru Telescope side, with the integration and test processes of the other subsystems ongoing in parallel. We are aiming to start engineering night-sky operations in 2019, and observations for scientific use in 2021. This article gives an overview of the instrument, current project status and future paths forward.
The traditional method for measuring CCD non-linearity using constant flux and variable exposure time is compared to a faster and potentially more accurate method that requires just two exposures at low intensity. Signal is varied by parallel-binning a successively greater number of lines. The binned image is compared to a conventional image with identical illumination, co-added digitally in the same pattern. This method requires no shutter calibration and is insensitive to illumination drift or charge transfer inefficiency. With some additional software effort, it can be arranged to tolerate illumination non-uniformity. We present data obtained by both methods for the 64 CD231-C6 outputs and discuss automated performance optimization. We find that the widely held assumption that non-linearity only affects high signals is incorrect when optimizing for minimum gain change over the full signal range, in which case slope increases with signal initially, then peaks in the mid-range before dropping again.
Zwicky Transient Facility is an integrated, multi-band astronomical survey system optimized for sensitivity, observing cadence, and efficiency. The key subsystem consists of a 600 megapixel CCD focal plane mounted in a flat-fielding vacuum cryostat, located at the prime focus of the 1.2-meter Samuel Oschin Telescope at Palomar Observatory. Supporting subsystems include a new 2.4-meter optical shutter assembly, a 1.35-meter diameter aspheric corrector plate, a cryostat stabilizing hexapod, a commercial robotic arm-based exchanger, three 440 millimeter width filters, four guide/focus CCDs, and dedicated optics compensating individual field curvature over each of sixteen 6k x 6k science CCDs.To optimize ZTF efficiency, all telescope and dome drives were upgraded for higher speed and acceleration, fast readout electronics were implemented, and a sophisticated robotic control system has been implemented.
We present for the first time on-sky results from the recently completed ZTF including its realized optical image quality, CCD noise, and observing efficiency performance and discuss engineering challenges that have been overcome. Early scientific results from the ZTF survey are also included.
Pixelated Cadmium Zinc Telluride (CdZnTe) detectors are currently flying on the Nuclear Spectroscopic Telescope ARray (NuSTAR) NASA Astrophysics Small Explorer. While the pixel pitch of the detectors is ≈ 605 μm, we can leverage the detector readout architecture to determine the interaction location of an individual photon to much higher spatial accuracy. The sub-pixel spatial location allows us to finely oversample the point spread function of the optics and reduces imaging artifacts due to pixelation. In this paper we demonstrate how the sub-pixel information is obtained, how the detectors were calibrated, and provide ground verification of the quantum efficiency of our Monte Carlo model of the detector response.
The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph design for the prime focus of the 8.2m Subaru telescope. PFS will cover 1.3 degree diameter field with 2394 fibers to complement the imaging capability of Hyper SuprimeCam (HSC). The prime focus unit of PFS called Prime Focus Instrument (PFI) provides the interface with the top structure of Subaru telescope and also accommodates the optical bench in which Cobra fiber positioners are located. In addition, the acquisition and guiding cameras (AGCs), the optical fiber positioner system, the cable wrapper, the fiducial fibers, illuminator, and viewer, the field element, and the telemetry system are located inside the PFI. The mechanical structure of the PFI was designed with special care such that its deflections sufficiently match those of the HSC’s Wide Field Corrector (WFC) so the fibers will stay on targets over the course of the observations within the required accuracy. In this report, the latest status of PFI development will be given including the performance of PFI components, the setup and performance of the integration and testing equipment.
PFS (Prime Focus Spectrograph), a next generation facility instrument on the 8.2-meter Subaru Telescope, is a very wide-field, massively multiplexed, optical and near-infrared spectrograph. Exploiting the Subaru prime focus, 2394 reconfigurable fibers will be distributed over the 1.3 deg field of view. The spectrograph has been designed with 3 arms of blue, red, and near-infrared cameras to simultaneously observe spectra from 380nm to 1260nm in one exposure at a resolution of ~1.6 - 2.7Å. An international collaboration is developing this instrument under the initiative of Kavli IPMU. The project is now going into the construction phase aiming at undertaking system integration in 2017-2018 and subsequently carrying out engineering operations in 2018-2019. This article gives an overview of the instrument, current project status and future paths forward.
The Prime Focus Spectrograph (PFS) is an optical/near-infrared multifiber spectrograph with 2394 science fibers distributed across a 1.3-deg diameter field of view at the Subaru 8.2-m telescope. The wide wavelength coverage from 0.38 μm to 1.26 μm, with a resolving power of 3000, simultaneously strengthens its ability to target three main survey programs: cosmology, galactic archaeology and galaxy/AGN evolution. A medium resolution mode with a resolving power of 5000 for 0.71 μm to 0.89 μm will also be available by simply exchanging dispersers. We highlight some of the technological aspects of the design. To transform the telescope focal ratio, a broad-band coated microlens is glued to each fiber tip. A higher transmission fiber is selected for the longest part of the cable system, optimizing overall throughput; a fiber with low focal ratio degradation is selected for the fiber-positioner and fiber-slit components, minimizing the effects of fiber movements and fiber bending. Fiber positioning will be performed by a positioner consisting of two stages of piezo-electric rotary motors. The positions of these motors are measured by taking an image of artificially back-illuminated fibers with the metrology camera located in the Cassegrain container; the fibers are placed in the proper location by iteratively measuring and then adjusting the positions of the motors. Target light reaches one of the four identical fast-Schmidt spectrograph modules, each with three arms. The PFS project has passed several project-wide design reviews and is now in the construction phase.
Charles Fisher, Chaz Morantz, David Braun, Michael Seiffert, Hrand Aghazarian, Eamon Partos, Matthew King, Larry Hovland, Mark Schwochert, Joel Kaluzny, Christopher Capocasale, Andrew Houck, Johannes Gross, Daniel Reiley, Peter Mao, Reed Riddle, Khanh Bui, David Henderson, Todd Haran, Robert Culhane, Daniele Piazza, Eric Walkama
The Cobra fiber positioner is being developed by the California Institute of Technology (CIT) and the Jet Propulsion
Laboratory (JPL) for the Prime Focus Spectrograph (PFS) instrument that will be installed at the Subaru Telescope on
Mauna Kea, Hawaii. PFS is a fiber fed multi-object spectrometer that uses an array of Cobra fiber positioners to rapidly
reconfigure 2394 optical fibers at the prime focus of the Subaru Telescope that are capable of positioning a fiber to
within 5μm of a specified target location. A single Cobra fiber positioner measures 7.7mm in diameter and is 115mm
tall. The Cobra fiber positioner uses two piezo-electric rotary motors to move a fiber optic anywhere in a 9.5mm
diameter patrol area. In preparation for full-scale production of 2550 Cobra positioners an Engineering Model (EM)
version was developed, built and tested to validate the design, reduce manufacturing costs, and improve system
reliability. The EM leveraged the previously developed prototype versions of the Cobra fiber positioner. The
requirements, design, assembly techniques, development testing, design qualification and performance evaluation of EM
Cobra fiber positioners are described here. Also discussed is the use of the EM build and test campaign to validate the
plans for full-scale production of 2550 Cobra fiber positioners scheduled to begin in late-2014.
The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph designed for the prime
focus of the 8.2m Subaru telescope. The metrology camera system of PFS serves as the optical encoder of the COBRA
fiber motors for the configuring of fibers. The 380mm diameter aperture metrology camera will locate at the Cassegrain
focus of Subaru telescope to cover the whole focal plane with one 50M pixel Canon CMOS sensor. The metrology
camera is designed to provide the fiber position information within 5μm error over the 45cm focal plane. The positions
of all fibers can be obtained within 1s after the exposure is finished. This enables the overall fiber configuration to be
less than 2 minutes.
The Prime Focus Spectrograph (PFS) is a new optical/near-infrared multi-fiber spectrograph design for the prime focus
of the 8.2m Subaru telescope. PFS will cover 1.3 degree diameter field with 2394 fibers to complement the imaging
capability of Hyper SuprimeCam (HSC). The prime focus unit of PFS called Prime Focus Instrument (PFI) provides the
interface with the top structure of Subaru telescope and also accommodates the optical bench in which Cobra fiber
positioners are located. In addition, the acquisition and guiding (AG) cameras, the optical fiber positioner system, the
cable wrapper, the fiducial fibers, illuminator, and viewer, the field element, and the telemetry system are located inside
the PFI. The mechanical structure of the PFI was designed with special care such that its deflections sufficiently match
those of the HSC’s Wide Field Corrector (WFC) so the fibers will stay on targets over the course of the observations
within the required accuracy.
The Nuclear Spectroscopic Telescope Array (NuSTAR) mission was launched on 2012 June 13 and is the first focusing high-energy X-ray telescope in orbit operating above ~10 keV. NuSTAR flies two co-aligned Wolter-I conical approximation X-ray optics, coated with Pt/C and W/Si multilayers, and combined with a focal length of 10.14 meters this enables operation from 3-79 keV. The optics focus onto two focal plane arrays, each consisting of 4 CdZnTe pixel detectors, for a field of view of 12.5 arcminutes. The inherently low background associated with concentrating the X-ray light enables NuSTAR to probe the hard X-ray sky with a more than 100-fold improvement in sensitivity, and with an effective point spread function FWHM of 18 arcseconds (HPD ~1), NuSTAR provides a leap of improvement in resolution over the collimated or coded mask instruments that have operated in this bandpass. We present in-orbit performance details of the observatory and highlight important science results from the first two years of the mission.
The Nuclear Spectroscopic Telescope Array (NuSTAR) satellite is a NASA Small Explorer mission designed to operate the first focusing high-energy X-ray (3-79 keV) telescope in orbit. Since the launch in June 2012, all the NuSTAR components have been working normally. The focal plane module is equipped with an 155Eu radioactive source to irradiate the CdZnTe pixel detectors for independent calibration separately from optics. The inflight spectral calibration of the CdZnTe detectors is performed with the onboard 155Eu source. The derived detector performance agrees well with ground-measured data. The in-orbit detector background rate is stable and the lowest among past high-energy X-ray instruments.
The Prime Focus Spectrograph (PFS) is an optical/near-infrared multi-fiber spectrograph with 2394 science fibers, which
are distributed in 1.3 degree diameter field of view at Subaru 8.2-meter telescope. The simultaneous wide wavelength
coverage from 0.38 μm to 1.26 μm, with the resolving power of 3000, strengthens its ability to target three main survey
programs: cosmology, Galactic archaeology, and galaxy/AGN evolution. A medium resolution mode with resolving
power of 5000 for 0.71 μm to 0.89 μm also will be available by simply exchanging dispersers. PFS takes the role for the
spectroscopic part of the Subaru Measurement of Images and Redshifts (SuMIRe) project, while Hyper Suprime-Cam
(HSC) works on the imaging part. HSC’s excellent image qualities have proven the high quality of the Wide Field
Corrector (WFC), which PFS shares with HSC. The PFS collaboration has succeeded in the project Preliminary Design
Review and is now in a phase of subsystem Critical Design Reviews and construction.
To transform the telescope plus WFC focal ratio, a 3-mm thick broad-band coated microlens is glued to each fiber tip.
The microlenses are molded glass, providing uniform lens dimensions and a variety of refractive-index selection. After
successful production of mechanical and optical samples, mass production is now complete. Following careful
investigations including Focal Ratio Degradation (FRD) measurements, a higher transmission fiber is selected for the
longest part of cable system, while one with a better FRD performance is selected for the fiber-positioner and fiber-slit
components, given the more frequent fiber movements and tightly curved structure. Each Fiber positioner consists of two
stages of piezo-electric rotary motors. Its engineering model has been produced and tested. After evaluating the statistics
of positioning accuracies, collision avoidance software, and interferences (if any) within/between electronics boards,
mass production will commence. Fiber positioning will be performed iteratively by taking an image of artificially back-illuminated
fibers with the Metrology camera located in the Cassegrain container. The camera is carefully designed so
that fiber position measurements are unaffected by small amounts of high special-frequency inaccuracies in WFC lens
surface shapes.
Target light carried through the fiber system reaches one of four identical fast-Schmidt spectrograph modules, each with
three arms. All optical glass blanks are now being polished. Prototype VPH gratings have been optically tested. CCD
production is complete, with standard fully-depleted CCDs for red arms and more-challenging thinner fully-depleted
CCDs with blue-optimized coating for blue arms. The active damping system against cooler vibration has been proven to
work as predicted, and spectrographs have been designed to avoid small possible residual resonances.
The Nuclear Spectroscopic Telescope Array (NuSTAR) will be the first space mission to focus in the hard X-ray
(5-80 keV) band. The NuSTAR instrument carries two co-aligned grazing incidence hard X-ray telescopes. Each
NuSTAR focal plane consists of four 2 mm CdZnTe hybrid pixel detectors, each with an active collecting area of
2 cm x 2 cm. Each hybrid consists of a 32x32 array of 605 μm pixels, read out with the Caltech custom low-noise
NuCIT ASIC. In order to characterize the spectral response of each pixel to the degree required to meet the
science calibration requirements, we have developed a model based on Geant4 together with the Shockley-Ramo
theorem customized to the NuSTAR hybrid design. This model combines a Monte Carlo of the X-ray interactions
with subsequent charge transport within the detector. The combination of this model and calibration data taken
using radioactive sources of 57Co, 155Eu and 241Am enables us to determine electron and hole mobility-lifetime
products for each pixel, and to compare actual to ideal performance expected for defect-free material.
The Nuclear Spectroscopic Telescope Array (NuSTAR) is a NASA Small Explorer mission that will carry the first focusing hard X-ray (6 - 80 keV) telescope to orbit. NuSTAR will offer a factor 50 - 100 sensitivity improvement compared to previous collimated or coded mask imagers that have operated in this energy band. In addition, NuSTAR provides sub-arcminute imaging with good spectral resolution over a 12-arcminute eld of view. After
launch, NuSTAR will carry out a two-year primary science mission that focuses on four key programs: studying the evolution of massive black holes through surveys carried out in fields with excellent multiwavelength coverage, understanding the population of compact objects and the nature of the massive black hole in the center of the Milky Way, constraining the explosion dynamics and nucleosynthesis in supernovae, and probing the nature of particle acceleration in relativistic jets in active galactic nuclei. A number of additional observations will be included in the primary mission, and a guest observer program will be proposed for an extended mission to expand the range of scientic targets. The payload consists of two co-aligned depth-graded multilayer coated grazing incidence optics focused onto a solid state CdZnTe pixel detectors. To be launched in early 2012 on a Pegasus rocket into a low-inclination Earth orbit, NuSTAR largely avoids SAA passage, and will therefore have low and
stable detector backgrounds. The telescope achieves a 10.14-meter focal length through on-orbit deployment of an extendable mast. An aspect and alignment metrology system enable reconstruction of the absolute aspect and variations in the telescope alignment resulting from mast exure during ground data processing. Data will
be publicly available at GSFC's High Energy Archive Research Center (HEASARC) following validation at the science operations center located at Caltech.
The Nuclear Spectroscopic Telescope Array (NuSTAR), scheduled for launch in 2011, is a NASA Small Explorer
mission that will improve the current sensitivity for detection of faint astrophysical sources in the 6-80 keV band by two
orders of magnitude. NuSTAR achieves high sensitivity by utilizing a hard X-ray focusing system. We have developed
Cadmium Zinc Telluride (CdZnTe) pixel detectors optimized for good energy for the NuSTAR focal plane. Each of
NuSTAR's two focal planes is comprised of hybrid detectors that consist of a CdZnTe pixel sensor with the anode
contacts directly attached to corresponding readout circuits integrated on a custom low-noise VLSI chip. Each hybrid is
20.5 x 20.5 x 2.0 mm in size with the anode divided into 32 x 32 array of pixels at 0.6048 mm. In this paper we
describe the hybrid sensor architecture, and present preliminary results from the characterization of detectors fabricated
for the NuSTAR focal plane Engineering Test Unit (ETU). We achieve excellent electronic readout noise with an
average of 250 eV FWHM, and energy resolution between 0.9 and 1.6 keV FWHM at 86.5 keV, depending on position
in the sensor and improving at lower energies. In order to achieve the best spectral resolution we need to make pixeldependent
corrections for events with charge split among multiple pixels, and in addition we make spectral corrections
based on depth of the gamma-ray interaction.
The Nuclear Spectroscopic Telescope Array, NuSTAR, is a NASA funded Small Explorer Mission, SMEX, scheduled
for launch in mid 2011. The spacecraft will fly two co-aligned conical approximation Wolter-I optics with a
focal length of 10 meters. The mirrors will be deposited with Pt/SiC and W/Si multilayers to provide a broad
band reflectivity from 6 keV up to 78.4 keV. To optimize the mirror coating we use a Figure of Merit procedure
developed for gazing incidence optics, which averages the effective area over the energy range, and combines an
energy weighting function with an angular weighting function to control the shape of the desired effective area.
The NuSTAR multilayers are depth graded with a power-law, di = a/(b + i)c, and we optimize over the total
number of bi-layers, N, c, and the maximum bi-layer thickness, dmax. The result is a 10 mirror group design
optimized for a flat even energy response both on and off-axis.
We are developing imaging Cadmium Telluride (CdTe) pixel detectors optimized for astrophysical hard X-ray
applications. Our hybrid detector consist of a CdTe crystal 1mm thick and 2cm × 2cm in area with segmented
anode contacts directly bonded to a custom low-noise application specific integrated circuit (ASIC). The CdTe
sensor, fabricated by ACRORAD (Okinawa, Japan), has Schottky blocking contacts on a 605 micron pitch in a
32 × 32 array, providing low leakage current and enabling readout of the anode side. The detector is bonded
using epoxy-gold stud interconnects to a custom low noise, low power ASIC circuit developed by Caltech's
Space Radiation Laboratory. We have achieved very good energy resolution over a wide energy range (0.62keV
FWHM @ 60keV, 10.8keV FWHM @ 662keV). We observe polarization effects at room temperature, but they
are suppressed if we operate the detector at or below 0°C degree. These detectors have potential application for
future missions such as the International X-ray Observatory (IXO).
We have developed large format CdZnTe pixel detectors optimized for
astrophysical applications. The detectors, designed for the High
Energy Focusing Telescope (HEFT) balloon experiment, each consists of an array of 24x44 pixels, on a 498 μm pitch. Each of the anode
segments on a CdZnTe sensor is bonded to a custom, low-noise
application-specific integrated circuit (ASIC)optimized to achieve low threshold and good energy resolution. We have studied detectors fabricated by two different bonding methods and corresponding anode plane designs---the first detector has a steering electrode grid, and is bonded to the ASIC with indium bumps; the second detector has no grid but a narrower gap between anode contacts, and is bonded to the ASIC with conductive epoxy bumps and gold stud bumps in series. In this paper, we present results from detailed X-ray testing of the HEFT
pixel detectors. This includes measurements of the energy resolution
for both single-pixel and split-pixel events, and characterization of the effects of charge trapping, electrode biases and temperature on the spectral performance. Detectors from the two bonding methods are contrasted.
Over the last six years, we have been developing imaging Cadmium Zinc
Telluride pixel detectors optimized for astrophysical focusing hard
X-ray telescopes. This application requires sensors with modest area, relatively small pixels and sub-keV energy resolution. For experiments operating in satellite orbits, energy thresholds of ~1-~2 keV are also desirable. In this paper we describe the desired detector performance characteristics, and report on the status of our development effort. In particular, we present results from a 1152-channel custom low-noise VLSI readout designed to achieve excellent spectral resolution and good imaging performance in the 5 --
100~keV band.
We have studied the design of astronomical multilayer telescopes optimized for performance from 5 to 200 keV. This region of the spectrum contains important nuclear lines that are observable in supernovae and their remnants. The study of these lines can help to differentiate currently competing theories of supernova explosion. Our telescope design will enable us to measure the spectral lines of isotopes such as Ni-56 in Type Ia supernovae and Ti-44 in core-collapse remnants, as well as to observe active galactic nuclei at gamma-ray energies. We considered the performances of multilayers of various material pairs, including W/Si, Pt/C and Ni93V7/Si, as employed in conical-approximation Wolter I optics. We experimented with dividing the energy band of interest into several sections, and optimizing different groups of mirror shells within a single telescope for each smaller energy band. Different material pairs are also used for different energy bands, in order to obtain a higher overall performance. We also consider the significance of the energy bandwidth on the effectiveness of Joensen's parametrization of the multilayer thickness profile, and on the mirror performance within the band.
The three most important quantities used to assess the performance of astronomical x-ray telescope optics are the on- axis collecting area, the field of view, and the half-power diameter. The first two quantities depend on the mirror packing arrangement and the multilayer coating design. In order to optimize the coating design, we have developed a figure-of-merit (FOM) that accounts for the coating response over a specified range of energies and off-axis angles. We present an example where we have used this FOM to optimize a specific coating design for the High Energy Focusing Telescope (HEFT) and to understand tradeoffs between performance and coating thickness.
We discuss the development of X-ray multilayer coatings for use as broad-band reflectors operating at energies above 100 keV. Such coatings can be used to produce hard X-ray telescopes that will make possible a variety of entirely new astronomical observations. We summarize our recent investigation into the growth, structure and hard X-ray performance of depth-graded W/Si multilayers, present follow-up information on Cu/Si multilayers, and discuss preliminary results obtained with Ni/Si, Ni.8Cr.2/Si, and Ni.93V.07/Si multilayers.
The High Energy Focusing Telescope (HEFT) is a balloon-borne experiment employing focusing optics in the hard X-ray/soft gamma-ray band (20 - 100 keV) for sensitive observations of astrophysical sources. The primary scientific objectives include imaging and spectroscopy of 44Ti emission in young supernova remnants, sensitive hard X-ray observations of obscured Active Galactic Nuclei, and spectroscopic observations of accreting high-magnetic field pulsars. Over the last four years, we have developed grazing-incidence depth-graded multilayer optics and high spectral resolution solid stat Cadmium Zinc Telluride pixel detectors in order to assemble a balloon-borne experiment with sensitivity and imaging capability superior to previous satellite missions operating in this band. In this paper, we describe the instrument design, and present recent laboratory demonstrations of the optics and detector technologies.
We have measured the hard X-ray reflectivity and imaging performance from depth graded W/Si multilayer coated mirror segments mounted in a single reflection cylindrical prototype for the hard X-ray telescopes to be flown on the High Energy Focusing Telescope (HEFT) balloon mission. Data have been obtained in the energy range from 18 - 170 keV at the European Synchrotron Radiation Facility and at the Danish Space Research Institute at 8 keV. The modeling of the reflectivity data demonstrate that the multilayer structure can be well described by the intended power law distribution of the bilayer thicknesses optimized for the telescope performance and we find that all the data is consistent with an interfacial width of 4.5 angstroms. We have also demonstrated that the required 5% uniformity of the coatings is obtained over the mirror surface and we have shown that it is feasible to use similar W/Si coatings for much higher energies than the nominal energy range of HEFT leading the way for designing Gamma-ray telescopes for future astronomical applications. Finally we have demonstrate 35 arcsecond Half Power Diameter imaging performance of the one bounce prototype throughout the energy range of the HEFT telescopes.
Sensitive nuclear line spectroscopy for observations of prompt emission from supernovae, as well as mapping of remnants has been a primary goal of gamma-ray astrophysics since its inception. A number of key lines lie in the energy band from 10 - 600 keV. In this region of the spectrum, observations have to-date been limited by high background and poor angular resolution. In this paper, we present several designs capable of extending the sensitivity of grazing incidence optics into this energy range. In particular, we discuss a 15 m focal length design for NASA's High-Sensitivity Spectroscopic Imaging Mission concept, as well as a 50 m focal length design which can extend ESA's XEUS mission into this band. We demonstrate that an unprecedented line sensitivity of 10-7 cm-2s-1 can be achieved for the most important lines in this energy band.
We have performed x-ray specular reflectivity and scattering measurements of thermally slumped glass substrates on x-ray diffractometers utilizing a rotating anode x-ray source at the Danish Space Research Institute (DSRI) and synchrotron radiation at the European Synchrotron Radiation Facility (ESRF) optics Bending Magnet beamline. In addition, we tested depth graded W/Si multilayer-coated slumped glass using x-ray specular reflectivity measurements at 8.048 keV and 28 keV and energy-dispersive measurements in the 20-50 keV rang at a double-axis diffractometer at the Orsted Laboratory, University of Copenhagen. The thermally slumped glass substrates will be used to fabricate the hard x-ray grazing incidence optics for the High-Energy Focusing Telescope. We compared the measurements to the SODART- mirrors from the SRG telescope mission program. The surface scatter measurement of the thermally slumped glass substrates yields Half Power Diameters (HPD's) of single- bounce mirrors of full-illuminated lengths of approximately 40 arcseconds for typical substrates and as low as approximately 10 arcseconds for the best substrates, whereas the SODART mirrors yields HPD's of approximately 80 arcseconds with very little variation. Both free-standing glass substrates and prototype mounted and multilayer-coated optics were tested. The result demonstrate that the surface scatter contribution, plus any contribution from the mounting procedure, to the Half Power Diameter from a telescope using the slumped glass optics will be in the subarcminute range.In addition we measured low surface microroughness, yielding high reflectivity, from the glass substrates, as well as from the depth graded W/Si multilayer-coated glass.
We report on the current status and performance of prototype hard x-ray optics we are producing for use on the high energy focusing telescope (HEFT) experiment. The baseline substrates are thermally formed glass mirrors that are overcoated with multilayers to provide good performance throughout the 20-80 keV bandpass. Progress made in the thermal forming process as well as in the multilayer performance has allowed production of optics that meet or exceed all HEFT requirements. We present metrology on the substrates and result from x-ray characterization. A novel mounting scheme for the individual telescope shells is currently being tested. If successful the mounting technique will produce a monolithic, extremely stiff and robust optic.
We are developing depth-graded, multilayer-coated mirrors for astrophysical hard x-ray focusing telescopes. In this paper, we discuss the primary technical challenges associated with the multilayer coatings, and report on progress to date. We have sputtered constant d-spacing and depth-graded W/Si multilayers onto 0.3 - 0.5 mm thick DURAN glass (AF45 and D263) and 0.4 mm thick epoxy replicated aluminum foils (ERAFs), both of which are potential mirror substrates. We have characterized the interfacial roughness, uniformity, and stress of the coatings. The average interfacial roughness of each multilayer was measured from specular reflectivity scans ((theta) i equals (theta) r) using Cu Kalpha x-rays. The thin film stress was calculated from the change in curvature induced by the coating on flat glass substrates. Thickness and roughness uniformity were measured by taking specular reflectivity scans of a multilayer deposited on the inside surface of a quarter cylinder section. We found that interfacial roughness ((sigma) ) in the multilayers was typically between 3.5 and 4.0 angstrom on DESAG glass, and between 4.5 and 5.0 angstrom on the ERAFs. Also, we found that coatings deposited on glass that has been thermally formed into a cylindrical shape performed as well as flat glass. The film stress, calculated from Stoney's equation, for a 200 layer graded multilayer was approximately 200 MPa. Our uniformity measurements show that with no baffles to alter the deposition profile on a curved optic, the layer thickness differs by approximately 20% between the center and the edge of the optic. Interfacial roughness, however, remained constant, around 3.6 angstrom, throughout the curved piece, even as the layer spacing dropped off.
Reflectivity at (lambda) equals 0.154 nm and mechanical stress in the bulk thin films of tungsten and silicon and single d- spacing multilayers on their basis with d approximately equals 2.8 nm deposited by the magnetron sputtering technique on flat thin substrates of Si wafer (approximately 0.2 mm), glass (approximately 0.3 mm), and epoxy gold replicated aluminum foil (approximately 0.3 mm) have been studied. The interfacial roughness of the multilayers has been calculated from the x- ray reflectivity curves as the following: on Si wafer (sigma) approximately equals 0.31 nm, on glass (sigma) approximately equals 0.32 nm, and on foil (sigma) approximately equals 0.34 nm. There was not observed a significant dependence on the stress in the Si film with change in rf power, Ar gas pressure and biasing. For the W films an increase of dc power results in an increase of stress. A similar relationship is also evident for W films deposited by rf power, but this dependence is less pronounced. The influence of low temperature (up to 200 degrees Celsius) annealing on x-ray reflectivity and stress in the multilayers has been investigated. There was not found an appreciable changes in the absolute value of reflectivity or in d-spacing with annealing temperature. The stress in the coatings changes with annealing temperature from compressive to tensile. There was observed a temperature of annealing at which the stress is no longer present in the film. The absolute value of this temperature measured for W/Si multilayer is approximately 120 degrees Celsius.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.