MICADO is the first-light camera of the ESO ELT, allowing NIR imaging and long-slit spectroscopy assisted by adaptive optics. MICADO is now entering its construction phase, and the software for data reduction is reaching an adequate maturity level. The PSF Reconstruction (PSF-R) of MICADO is a software tool for the blind derivation of the PSF, only using adaptive optics telemetry data. An update of the status of the PSF-R service is provided here. The PSF-R prototype has been tested on ERIS@VLT data in order to check the reconstruction of on- and off-axis PSFs. The on-axis PSF-R is accurate at a few percent level on Strehl, FWHM, Encircled Energy, and half light radius, while for the off-axis case the match is within 10 to 15% at a distance of half isoplanatic angle. The first version of the workflow for the PSF-R pipeline has been developed and verified using the latest release of the ESO data processing system. A set of simulations has been implemented on the morphological analysis of distant galaxies, showing that the accuracy of the PSF-R matches the goals needed to study their morphology. In summary, the PSF-R team is on the right track towards the ELT first light.
SHARK-VIS, the Large Binocular Telescope (LBT) optical high-contrast imager, had its first light in October 2023. Thanks to the high performance of the refurbished LBT adaptive optics system SOUL, SHARK-VIS extends the capabilities of one arm of the LBT telescope down to 400nm, delivering images with a spatial resolution in the order of 20 mas, which in the infrared bands will be achieved only by future Extremely Large Telescopes. This document reports the instrument’s preliminary performance on-sky, which confirms that SHARK-VIS is ready for its main science applications. Specifically, we will show that the instrument is able to provide views of minor bodies and satellites in the Solar System with an unprecedented level of detail and that it achieves contrasts of the order 1e-4 with its H-alpha filter (1nm FWHM) at 150 mas separation from a mag G14 star, even under non-optimal weather conditions.
The highest scientific return, for adaptive optics (AO) observations, is achieved with a reliable reconstruction of the PSF. This is especially true for MICADO@ELT. In this presentation, we will focus on extending the MICADO PSF reconstruction (PSF-R) method to the off-axis case. Specifically, a novel approach based on temporal-based tomography of AO telemetry data has been recently implemented. Results from the PSF-R of both simulated and real data show that, at half isoplanatic angle distances, a precision of about 10 to 15% is achievable in both Strehl ratio and full-width at half maximum, paving the way to extend the MICADO PSF-R tool also to the multi-conjugated AO case.
MICADO is a first light instrument for the Extremely Large Telescope (ELT), set to start operating later this decade. It will provide diffraction limited imaging, astrometry, high contrast imaging, and long slit spectroscopy at near-infrared wavelengths. During the initial phase operations, adaptive optics (AO) correction will be provided by its own natural guide star wavefront sensor. In its final configuration, that AO system will be retained and complemented by the laser guide star multi-conjugate adaptive optics module MORFEO (formerly known as MAORY). Among many other things, MICADO will study exoplanets, distant galaxies and stars, and investigate black holes, such as Sagittarius A* at the centre of the Milky Way. After their final design phase, most components of MICADO have moved on to the manufacturing and assembly phase. Here we summarize the final design of the instrument and provide an overview about its current manufacturing status and the timeline. Some lessons learned from the final design review process will be presented in order to help future instrumentation projects to cope with the challenges arising from the substantial differences between projects for 8-10m class telescopes (e.g. ESO’s VLT) and the next generation Extremely Large Telescopes (e.g. ESO’s ELT). Finally, MICADO's expected performance will be discussed in the context of the current landscape of astronomical observatories and instruments. For instance, MICADO will have similar sensitivity as the James Webb Space Telescope (JWST), but with six times the spatial resolution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.