We report on the design and performance of single-frequency VCSELs that are electro-optically tunable in the 852nm wavelength range. Electro-optic tuning of the index of refraction is achieved by changing the reverse-bias electric field in a secondary p-i-n junction that contains coupled quantum wells. The electro-optic tuning is enhanced by putting the index-tuning region in a secondary cavity of a dual-cavity VCSEL. Electro-optic tuning can achieve 1nm of wavelength tuning without changing laser power and can operate at modulation frequencies up to 1GHz.
We report on the use of etching and regrowth to shift the longitudinal resonance wavelength of adjacent VCSELs by -4nm from 980nm. The etched VCSEL exhibited less than 5% change in threshold (from 0.36mA) and slope efficiency relative to neighboring un-etched VCSELs. This etch and regrowth technique can be applied to produce wavelength-division multiplexed (WDM) VCSEL arrays with close spacing (<100microns). We will also discuss applications to 2-dimensional index engineering of novel VCSEL devices, since wavelength shifting is equivalent to effective index tuning.
We design, produce, characterize, and compare 850 nm vertical cavity surface emitting lasers (VCSELs) with one and two oxide aperture layers, and with cavity optical thicknesses of 0.5λ and 1.5λ. We process five VCSEL wafers side by side with varying oxide aperture diameters from about 4 to 16 m and perform on-wafer static and dynamic testing. From optical output power-current-voltage characteristics we extract and compare threshold currents, differential series resistances, and wall plug efficiencies. We measure the dynamic 2-port scattering parameters (S11 and S21) to determine the small signal modulation frequency response of the VCSEL and the combined VCSEL and photodetector optical link. By extracting and comparing the D-factor, modulation current efficiency factor, -3 dB bandwidth, and resistanceinductance- capacitance (RLC) circuit elements we find only a small difference in the static and dynamic performance characteristics of the five VCSEL designs, with slightly higher bandwidth for the half-lambda cavity VCSELs with two top oxide apertures.
We are reporting the first successful fabrication of 850-nm buried tunnel junction (BTJ) VCSELs. Multiple parameters were considered for the design. First, n-type dopants other than silicon had to be considered for an abrupt junction. Second, proper layer thickness had to be chosen. Finally, compatibility with regrowth and processing had to be ensured. In this paper the successful fabrication and performance of 850-nm BTJ VCSELs with tunnel junctions comprised of GaAs and AlGaAs materials is demonstrated. Key achieved parameters include a significant improvement in the slope efficiency from approximately 0.45 W/A in an oxide-aperture VCSEL to over 0.6 W/A.
InAs quantum dots embedded in InGaAs quantum well (DWELL) structures grown by metal-organic chemical-vapor
deposition on nano-patterned GaAs pyramids and planar GaAs (001) substrate are comparatively investigated.
Photoluminescence (PL), PL excitation, and time-resolved PL measurements demonstrate that the DWELL grown on the
GaAs pyramids has a broad QW PL band (FWHM ~ 90 meV) and a better QD emission efficiency than the DWELL
structure grown on the planar GaAs (001) substrate. These properties are attributed to the InGaAs QW with distributed
thickness profile on the faceted GaAs pyramid, which introduces tapered energy band structure and assists the carrier
capture into the QDs. This research provides useful data for further improving the performance of DWELL structures for
device applications.
In this paper, we describe the results of using strain-compensation (SC) for closely-stacked InAs/GaAs quantum dot (QD) structures. The effects of the (In)GaP SC layers has been investigated using several methods. High-resolution x-ray diffractometry (XRD) quantifies the values of experimental strain reduction compared to calculations. Atomic force microscopy (AFM) indicates that the SC layer improves both QD uniformity and reduces defect density. Furthermore, increase in photoluminescence (PL) intensity has been observed from compensated structure. The use of Indium-flushing to dissolve large defect islands prevent further defect propagation in stacked QD active region. Room-temperature ground-state lasing at emission wavelengths of 1227-1249 nm have been realized with threshold current densities of 208-550 A/cm2 for 15-20 nm spacing structures.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.