A secure holographic system is proposed, based on the principle of two-wave encryption in the Fresnel domain under convergent random illumination. The convergent random wavefront, instead of the commonly used plane wavefront, improves the security of a holographic encryption system, providing better protection from unauthorized users. Our system has two new encryption parameters (the convergence distance and randomized lens phase function) in addition to the propagation distance and random phase masks in the reference arm. Validity and feasibility of the proposed method are verified with numerical simulation and experimental results.
In the last decade, investigations have been carried out on information security, based on double random phase encryption (DRPE). In DRPE, a two-dimensional image is encoded into a stationary white noise. To increase the security further, the Fourier transform is replaced with a fractional Fourier transform. Different fractional orders with random phase masks (RPMs) work as encryption keys. In the present work, image encryption is performed in the anamorphic fractional Fourier domain with a modified Lohmann's second-type (MLST) system. In-plane rotation of the MLST system adds the in-plane rotation angle as a key for encryption, in addition to the RPMs and different fractional orders in two orthogonal directions. Simulations have been carried out to substantiate the feasibility of the proposed encryption scheme. Experimental results are also given to demonstrate the optical implementation.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.