An approach is presented to solve the problem of spatial shift wrapping associated with spatial shift estimation-based fringe pattern profilometry (FPP). This problem arises as the result of fringe reuses (that is, use of fringes with periodic light intensity variance), and the spatial shift can only be identified without ambiguity within the range of a fringe width. It is demonstrated that the problem is similar to the phase unwrapping problem associated with the phase-detection-based FPP, and the proposed method is inspired by the existing ideas of using multiple images with different wavelengths proposed for phase unwrapping. The effectiveness of the proposed method is verified by comparing experimental results against several objects, with the last object consisting of more complex surface features. We conclude by showing that our method is successful in reconstructing the fine details of the more complex object.
In this paper, we present a new approach for the 3D measurement using digital fringe projection. Instead of sinusoidal
fringe patterns and the traditional phase shift detection, the proposed technique makes use of triangular patterns and the
spatial shift estimation for extract the 3D shape. The proposed technique is advantageous not only by improved
immunization to nonlinear distortion associated with digital projections, but also reduced computational burden for its
implementation. Theoretical analysis and experimental results are also presented to confirm the effectiveness of the
proposed technique.
In this paper, a new approach is presented for solving the problem of spatial shift wrapping associated with Spatial Shift Estimation (SSE)-based Fringe Pattern Profilometry (FPP). The problem arises as the result of fringe reuse (that is, fringes periodic light intensity variance), and the spatial shift can only be identified without ambiguity with the range of a fringe width. It is demonstrated that the problem is similar to the phase unwrapping problem associated with the phase detection based FPP, and the proposed method is inspired by the existing ideas of using multiple images with different wavelengths proposed for phase unwrapping. The effectiveness of the proposed method is verified by experimental results on an object with complex surface shape.
In this paper we present a review of the phase unwrapping problem in Fringe Pattern Profilometry (FPP), based on which
we study the spatial shift wrapping problem in spatial shift estimation (SEE) based FPP. An approach for carrying out
the spatial shift unwrapping is proposed with its performance confirmed by experiments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.