We have demonstrated a single-mode lasing with a narrow single-lobe beam emission from InP-based double-lattice photonic-crystal surface-emitting lasers (PCSELs) in a wide temperature range from 25°C to 80°C under CW condition. A high output power of 240 mW is achieved at a temperature of 25°C. The lasing occurs even at a high temperature of 80°C, and the output power is 48 mW. The single-mode lasing and the narrow single-lobe beam with divergence angle below 1.5°, which is a unique feature of PCSELs, are maintained even at a high temperature of 80°C.
We report on development and characterization of 850 nm vertical-cavity surface-emitting lasers (VCSELs) having a -3dB modulation bandwidth above 24 GHz with a flat frequency response at temperatures up to 85°C. Aperture size is optimized for a high relaxation oscillation frequency with a narrow spectral width and low relative intensity noise. Two types of VCSELs (Gen 1 and Gen 2) with different epitaxial designs are fabricated with an optimized aperture size. Large-signal modulation at 53 GBd PAM-4 (106 Gb/s) is performed for eye diagram and TDECQ measurements. The Gen 1 VCSEL is capable of 53 GBd PAM-4 modulations at temperatures up to 70°C, but performance is insufficient at 85°C. The Gen 2 VCSEL with a stronger optical confinement achieves higher modulation bandwidth with an extremely suppressed resonance peak in frequency response, leading to reduction in TDECQ compared to the Gen 1 VCSEL. TDECQ below 4.5 dB are verified at temperatures up to 85°C without any pre-emphasis in the transmitter. Also, we use a pre-emphasis with 3-tap feed forward equalizer to improve the TDECQ by 2 dB. Furthermore, after the transmission over 100 m multimode fiber (OM5), the TDECQ keeps below 3.0 dB even at 85°C. These results demonstrate the capability of 850 nm VCSELs for 100 Gb/s per optical lane short-reach interconnects operating over a wide temperature range
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.