Innovative technologies for minimally invasive interventions have the potential to add value to vascular procedures in the hybrid operating theater (HOT). Restricted budgets require prioritization of the development of these technologies. We aim to provide vascular surgeons with a structured methodology to incorporate possibly conflicting criteria in prioritizing the development of new technologies. We propose a multi-criteria decision analysis framework to evaluate the value of innovative technologies for the HOT based on the MACBETH methodology. The framework is applied to a specific case: the new HOT in a large teaching hospital. Three upcoming innovations are scored for three different endovascular procedures. Two vascular surgeons scored the expected performance of these innovations for each of the procedures on six performance criteria and weighed the importance of these criteria. The overall value of the innovations was calculated as the weighted average of the performance scores. On a scale from 0-100 describing the overall value, the current HOT scored halfway the scale (49.9). A wound perfusion measurement tool scored highest (69.1) of the three innovations, mainly due to the relatively high score for crural revascularization procedures (72). The novel framework could be used to determine the relative value of innovative technologies for the HOT. When development costs are assumed to be similar, and a single budget holder decides on technology development, priority should be given to the development of a wound perfusion measurement tool.
The application of endovascular aortic aneurysm repair has expanded over the last decade. However, the long-term performance of stent grafts, in particular durable fixation and sealing to the aortic wall, remains the main concern of this treatment. The sealing and fixation are challenged at every heartbeat due to downward and radial pulsatile forces. Yet knowledge on cardiac-induced dynamics of implanted stent grafts is sparse, as it is not measured in routine clinical follow-up. Such knowledge is particularly relevant to perform fatigue tests, to predict failure in the individual patient and to improve stent graft designs. Using a physical dynamic stent graft model in an anthropomorphic phantom, we have evaluated the performance of our previously proposed segmentation and registration algorithm to detect periodic motion of stent grafts on ECG-gated (3D+t) CT data. Abdominal aortic motion profiles were simulated in two series of Gaussian based patterns with different amplitudes and frequencies. Experiments were performed on a 64-slice CT scanner with a helical scan protocol and retrospective gating. Motion patterns as estimated by our algorithm were compared to motion patterns obtained from optical camera recordings of the physical stent graft model in motion. Absolute errors of the patterns' amplitude were smaller than 0.28 mm. Even the motion pattern with an amplitude of 0.23 mm was measured, although the amplitude of motion was overestimated by the algorithm with 43%. We conclude that the algorithm performs well for measurement of stent graft motion in the mm and sub-mm range. This ultimately is expected to aid in patient-specific risk assessment and improving stent graft designs.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.