Using artificial materials such as electromagnetic bandgap structures can be one of the promising ways to improve the efficiency of compact miniaturized vacuum electronic devices such as millimeter-band traveling-wave tubes with 2D planar microstrip slow-wave structures on dielectric substrates. Precision micromachining of the microsized elements of the electromagnetic bandgap structures is challenging. Here we proposed and studied an approach for microfabrication of the electromagnetic bandgap structure with microsized patterns by pulsed laser ablation. The obtained results of the morphology studies by scanning electron microscopy and optical microscopy show that the proposed approach allows fabricating of the microsized pattern with suitable tolerance. Also, we showed several results of numerical simulations of the electromagnetic parameters of the meander-line slow-wave structure on a dielectric substrate with an incorporated electromagnetic bandgap structure.
Millimeter-band traveling-wave tubes with multiple electron beams have attracted an increasing interest thanks to higher output power. In this work, we report the results of the development of the technological approach to microfabrication of a meander-line slow-wave structure for millimeter-band traveling-wave tubes with multiple sheet electron beams. We used a precision CNC laser machine equipped with a 1064-nm pulsed YAG:Nd fiber laser maintaining regimes with the duration of laser pulses from 200 ns to 8 ns. Several SWS samples have been fabricated and studied by scanning electron and optical microscopy methods
Traveling-wave tubes (TWT) with microstrip planar slow wave structures (SWS) have attracted an increasing interest thanks to low operating voltage and size of the tube, as well as compatibility with modern microfabrication technologies. In this work, we report the results of design, fabrication, and experimental cold-test study of planar meander-line SWSs for millimeter-band TWTs (V-, W-, and D-band). SWS samples have been fabricated using the technology based on magnetron sputtering and subsequent laser ablation.
Design and preliminary numerical simulations of D-band planar microstrip meander-line slow wave structure for lowvoltage tubes with sheet electron beam were carried out. An original approach based on magnetron sputtering and laser ablation methods was utilized for microstrip meander-line slow wave structure microfarication. An application of nanosecond and picosecond laser ablation for microfabrication of D-band (110-170 GHz) planar microstrip meander-line slow wave structure was considered. We have verified our original approach for planar slow wave structures microfabrication by using different CNC precision laser machines operating with different values of laser pulse duration (100 ns, 8 ns, 4 ns and 10 ps). Samples of slow wave structures were fabricated and characterized by scanning electron microscopy and profilometry methods. It was shown that each considered CNC precision laser machine allows fabricating D-band microstrip meander-line slow wave structure with required dimensions, but picosecond laser ablation has such advantages as the absence of ablation products (droplets, and etc.) on the slow wave structure surface. As the next step, we are going to study S-parameters of microfabricated D-band microstrip meander-line slow wave structure samples experimentally by using vector network analyzer with D-band frequency converters.
Microfabricated vacuum power amplifiers and oscillators operating at millimeter and submillimeter (THz) bands are of great interest for applications in high-speed communication, radar, security and military systems, electronic warfare, etc. In this work, we report the results of numerical simulation and cold-test measurements of electromagnetic parameters of the V-band (50-70 GHz) planar meander-line SWS. The microstrip meander-line SWS is suitable for using in a millimeter-band TWT amplifiers. Several samples of copper microstrip meander-line SWS on a quartz substrate consisting of 50 meander periods with input and output couplers were designed, microfabricated and optimized. The SWS was microfabricated by using magnetron sputtering and laser ablation processes. This technique is a more facile, flexible and lower cost as compared to photolithography method. Transmission and reflection of proposed SWS were measured experimentally and calculated numerically. The results of the experimental cold-test measurements are verified by numerical simulations. Electromagnetic parameters of the SWSs were simulated using the finite-element ANSYS HFSS and COMSOL Multiphysics software packages. The results obtained with these two codes are in excellent agreement with each other and good agreement between experimental and numerical results is also observed.
Microfabricated vacuum-tube millimeter- and THz-band sources are of great interest for numerous applications such as communications, radar, sensors, imaging, etc. Recently, miniaturized sheet-beam traveling-wave tubes for sub-THz and THz operation have attracted a considerable interest. In this paper, we present the results of modeling and development of slow-wave structures (SWS) for medium power (10-100 W) traveling-wave tube (TWT) amplifiers and backwardwave oscillators (BWO) in near-THz frequency band. Different types of SWSs are considered, such as double-vane SWS for TWT with a sheet electron beam, a folded-waveguide SWS, and novel planar SWSs on dielectric substrates.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.