KEYWORDS: Stars, Point spread functions, Sensors, Large Synoptic Survey Telescope, Calibration, Data modeling, Equipment, Signal to noise ratio, Modeling, Edge detection, Galaxy evolution, Galaxy groups and clusters
We present the phase one report of the Bright Star Subtraction (BSS) pipeline for the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST). This pipeline is designed to create an extended PSF model by utilizing observed stars, followed by subtracting this model from the bright stars present in LSST data. Running the pipeline on Hyper Suprime-Cam (HSC) data shows a correlation between the shape of the extended PSF model and the position of the detector within the camera’s focal plane. Specifically, detectors positioned closer to the focal plane’s edge exhibit reduced circular symmetry in the extended PSF model. To mitigate this effect, we present an algorithm that enables users to account for the location dependency of the model. Our analysis also indicates that the choice of normalization annulus is crucial for modeling the extended PSF. Smaller annuli can exclude stars due to overlap with saturated regions, while larger annuli may compromise data quality because of lower signal-to-noise ratios. This makes finding the optimal annulus size a challenging but essential task for the BSS pipeline. Applying the BSS pipeline to HSC exposures allows for the subtraction of, on average, 100 to 700 stars brighter than 12th magnitude measured in g-band across a full exposure, with a full HSC exposure comprising ≈100 detectors.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.