Sparse-view computed tomography (CT) becomes a major concern in the medical imaging field due to its reduced X-ray radiation dose. Recently, various convolutional neural network (CNN)-based approaches have been proposed, requiring the pairs of full and sparse-view CT images for network training. However, these paired data acquisition is impractical or difficult in clinical practice. To handle this problem, we propose the weakly-supervised learning for streak artifact reduction with unpaired sparse-view CT data. For CNN training dataset, we generate the pairs of input and target images from the given sparse-view CT data. Then, we iteratively apply the trained network to given sparse-view CT images and acquire the prior images. As the success factor of our novel framework, we estimate the original streak artifacts in the given sparse-view CT images from the prior images and subtract the estimated streak artifacts from the given sparse-view CT images. As a result, the proposed method has the best performance of lesion detection compared to the other methods.
In this study, we propose a method to reduce streak artifacts of sparse view CT images via convolutional neural network (CNN). The main idea of the proposed method is to utilize both image and sinogram domain data for CNN training. To generate datasets, projection data were acquired from 512 (128) views using Siddon’s ray-driven algorithm, and full (sparse) view CT images were reconstructed by filtered back projection with a Ram-Lak filter. We first trained U-net based CNN_img, which was designed to reduce the streak artifacts of sparse view CT in image domain. Then, the output images of CNN_img were used as prior images to conduct pseudo full view sinogram. Before upsampling, sparse view sinogram was normalized by the prior images, and then linear interpolation was employed to estimate the missing view data compared to full view sinogram. The upsampled data were denormalized using prior images. To reduce the residual errors in pseudo full view sinogram data, we trained CNN_hybrid with residual encoder-decoder CNN, which is known to be effective in reducing the residual errors while preserving structural details. In order to increase the learning efficiency, the dynamic range of the pseudo full view sinogram data was converted via exponential function. The results show that the CNN_hybrid provides better performance in streak artifacts reduction than CNN_img, which is also confirmed by quantitative assessment.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.