Retinex algorithms have been widely applied in many aspects of image processing. Based on the iterative Retinex algorithm, we propose an edge-preserving illumination estimation method. Inspired by the anisotropic diffusion, an edge-stopping function is introduced in the iterative computation. This modification enables the preservation of abrupt edges when computing the upper envelope of a given image. Based on the illumination-reflectance decomposition, a high-dynamic-range (HDR) radiance map can be easily tone-mapped to be a low-dynamic-range image by compressing the range of the estimated illumination. Artifacts are effectively suppressed using the proposed method. Meanwhile, we also propose a jumping-spiral iteration manner to improve the symmetry of the edge response. Experimental results show that the proposed tone mapping algorithm is very effective in reproducing HDR scenes, and has a better performance compared with some similar operators.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.