This will count as one of your downloads.
You will have access to both the presentation and article (if available).
The attempt to differentiate between normal global uniformity and local uniformity pose a metrology challenge. In this paper, we present a scanning electron microscopy (SEM) based method for detecting stochastic defects. The detected defects are reviewed by metrology and classified by defect margin merit. The proposed merit converts geometrical attributes into statistical attributes which identify whether a pattern is statistically normal or a statistical outlier.
The quality of the image transfer process depends on the characteristics of the sidewall pattern morphology. Rectangular Sidewalls with a flat top and vertical edges will result with symmetrical and uniform etched image. On the other hand, Facet top, bent sidewalls, sloped edges or foot, may distort the etched image and device electrical characteristics.
In this paper we present a description of the 3DSEM metrology technique used and simulation results. We demonstrate three dimensional characterization of Sidewalls pattern fabricated with different etch recipes:
Pattern roughness is derived from the physical and chemical characteristics of these process steps. It is changing with each of the SAQP process steps, based on material stack and the etch process characteristics. Relative to a sub 10 nm pattern sizes pattern, edge roughness can significantly impact pattern physical dimensions. Unless controlled it can increase the variability of device electrical performance, and reduce yield.
In this paper we present the SAQP process steps and roughness characterization, performed with Power Spectral Density (PSD) methodology. Experimental results demonstrates the ability of PSD analysis to sensitively reflect detailed characterization of process roughness, guiding process development improvements, and enabling roughness monitoring for production.
We were able to change the spatial orientation of Silicon nanowires by modifying scanning conditions which effectively controls the amount of charging induced by the SEM. Strong charging, which corresponds to high dose leads to change of silicon wires spatial orientation, they appear straight in SEM top view and tilt image planes. Reducing charging by the means of scan rate increase or lower number of scanned frames saves the silicon wires buckled in their natural state.
To meet these challenges a new height map reconstruction technique was introduced, using the CDSEM side detectors signal. Measuring pixel by pixel position in X, Y and Z (height) dimensions, we can obtain the buckling vector gradient along the wire in three dimensions. In this paper we present: (1) A description of the height map reconstruction technique used. (2) Three dimensional characterization of SiNW: (a) SiNW buckling measurements (b) Characterization of buckling as a function of the SiNW length and width.
View contact details
No SPIE Account? Create one