LEDs can be modulated at relatively high speeds to support wireless optical data communication (OWC). Yet, particularly LEDs optimized for illumination act as a non-linear low-pass communication channel. It has become clear in recent literature that their non-linearity and low-pass behavior cannot be seen as two separable, cascaded mechanisms. Although standard nonlinear equalizer schemes, e.g. based on Volterra Series, have been proposed and tested before, our recent research results show that a more dedicated approach in which we specifically analyze the hole-electron recombination mechanisms, yield a very effective and computationally-efficient compensation approach. In this manuscript, we will review the non-linear differential equations for photon emissions, its electrical equivalent circuit and a discrete-time variant with delays and non-linearities. This can be inverted, in the sense that we can actively eliminate or mitigate the non-linear dynamic LED distortion by adequate signal processing. We propose an aggressive simplification of the compensation circuit that allows us to use a relatively simple structure with only a couple of parameters.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.