The concentration level of bile acids is a useful indicator for the diagnosis of liver diseases since individual suffering from liver diseases often has a sharp increase in bile acid concentration. Here we present a sensor platform based on the anchoring transition of nematic liquid crystal (LC), 4’, 4-alkylcyanobiphenyls (nCB, n=5-8), at the surfactant-laden LC/aqueous interfaces for the detection of cholic acid (CA) in aqueous solution. In the sensor platform, the competitive adsorption of CA at the surfactant-laden LC/aqueous interface triggers a homeotropic-to-planar anchoring transition of the LC at the interface. We find the detection limit, which is the minimum concentration of CA required to trigger the LC transition, increases with the increase of the chain length of nCB.
The concentration level of bile acids is a useful indicator for early diagnosis of liver diseases. The prevalent measurement method in detecting bile acids is the chromatography coupled with mass spectrometry, which is precise yet expensive. Here we present a biosensor platform based on liquid crystal (LC) films for the detection of cholic acid (CA). This platform has the advantage of low cost, label-free, solution phase detection and simple analysis. In this platform, LC film of 4-Cyano-4'-pentylbiphenyl (5CB) was hosted by a copper grid supported with a polyimide-coated glass substrate. By immersing into sodium dodecyl sulfate (SDS) solution, the LC film was coated with SDS which induced a homeotropic anchoring of 5CB. Addition of CA introduced competitive adsorption between CA and SDS at the interface, triggering a transition from homeotropic to homogeneous anchoring. The detection limit can be tuned by changing the pH value of the solution from 12uM to 170uM.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.