The covalent linking of acceptor molecules to electron donating conjugated polymer is an approach for the development of new photoactive materials for the fabrication of organic photoelectric conversion devices. With this strategy we have designed a polyalkylthiophene copolymer series containing in the side chain anthraquinone molecules as electron acceptor. The peculiar features of the copolymers are the good processability and the ease in tailoring the content of acceptor moieties. Their potential use as photoactive materials is investigated in terms of the photoinduced charge transfer properties, studied by FTIR photoinduced absorption and Light Induced Electron Spin Resonance spectroscopies. The results indicate the photoinduced electron transfer from the polythiophene backbone to the anthraquinone substituents and its tunability by changing the content of acceptor molecules. The photovoltaic response of these polymers is also discussed.
Information on doping- and photoinduced phenomena and processes in materials used in organic polymeric photovoltaic systems (plastic solar cells) can be obtained using infrared spectroscopy. The methods and results for the identification of doping- and photoinduced charge carriers, investigation of charge carriers in electrochemical systems, and studies on degradation processes are shown.
We present an extensive photoinduced absorption study of alkyl substituted poly (2,5- thienylenevinylene)s in both the solid state and in solution. The optical and conformational properties of the samples are monitored with UV-Vis absorption and emission, IR absorption and Raman scattering. Three photoinduced states are detected under steady state condition which display lifetimes of the order of 100 ms in the solid state. The two low-energy bands are assigned to bipolarons, while a third band peaked near the band edge has a different origin. In solution very lone-lived photoexcitated states are observed and they are assumed to recombine via a solvent-assisted photo-doping mechanism.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.