Conventional optical components are limited to size-scales much larger than the wavelength of light, as changes to the amplitude, phase and polarization of the electromagnetic fields are accrued gradually along an optical path. However, advances in nanophotonics have produced ultrathin, so-called “flat” optical components that beget abrupt changes in these properties over distances significantly shorter than the free space wavelength. While high optical losses still plague many approaches, phonon polariton materials have demonstrated long lifetimes for localized modes in comparison to plasmon-polariton based nanophotonics. Our work predicts a further 14-fold increase in the optic phonon lifetime and we experimentally report a ~3-fold improvement through isotopic enrichment of hexagonal boron nitride (hBN). We establish commensurate increases in the phonon polariton propagation length via direct imaging of polaritonic standing waves by means of infrared nano-optics. Our results provide the foundation for a materials-growth-directed approach towards realizing the loss control necessary for the development of phonon polariton based nanophotonic devices.
Siyuan Dai, Mykhailo Tymchenko, Yafang Yang, Qiong Ma, Marta Pita-Vidal, Kenji Watanabe, Takashi Taniguchi, Pablo Jarillo-Herrero, Michael Fogler, Andrea Alù, Dmitri Basov
Hexagonal boron nitride (hBN) is a natural hyperbolic material that supports both volume-confined hyperbolic polaritons (HPs) and sidewall-confined hyperbolic surface polaritons (HSPs). In this work, we demonstrate efficient excitation, control and steering of HSPs in hBN through engineering the geometry and orientation of hBN sidewalls. By combining infrared (IR) nano-imaging and numerical simulations, we investigate the reflection, transmission and scattering of HSPs at the hBN corners with various apex angles. We show that the sidewall-confined nature of HSPs enables a high degree of control over their propagation by designing the geometry of hBN nanostructures.
Siyuan Dai, Qiong Ma, Zhe Fei, Mengkun Liu, Michael Goldflam, Trond Andersen, William Garnett, Will Regan, Martin Wagner, Alexander McLeod, Alexandr Rodin, Shou-En Zhu, Kenji Watanabe, T. Taniguchi, Gerado Dominguez, Mark Thiemens, Antonio Castro Neto, Guido C.A. Janssen, Alex Zettl, Fritz Keilmann, Pablo Jarillo-Herrero, Michael Fogler, Dmitri Basov
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [1]. Additionally, we carried out the modification of hyperbolic response in meta-structures comprised of a mononlayer graphene deposited on hBN [2]. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the “hyperlens” for subdiffractional focusing and imaging using a slab of hBN [3].
References
[1] S. Dai et al., Science, 343, 1125 (2014).
[2] S. Dai et al., Nature Nanotechnology, 10, 682 (2015).
[3] S. Dai et al., Nature Communications, 6, 6963 (2015).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.