Predicting the etch and deposition profiles created using plasma processes is challenging due to the complexity of plasma discharges and plasma-surface interactions. Volume-averaged global models allow for efficient prediction of important processing parameters and provide a means to quickly determine the effect of a variety of process inputs on the plasma discharge. However, global models are limited based on simplifying assumptions to describe the chemical reaction network. Here a database of 128 reactions is compiled and their corresponding rate constants collected from 24 sources for an Ar/CF4 plasma using the platform RODEo (Recipe Optimization for Deposition and Etching). Six different reaction sets were tested which employed anywhere from 12 to all 128 reactions to evaluate the impact of the reaction database on particle species densities and electron temperature. Because many the reactions used in our database had conflicting rate constants as reported in literature, we also present a method to deal with those uncertainties when constructing the model which includes weighting each reaction rate and filtering outliers. By analyzing the link between a reaction’s rate constant and its impact on the predicted plasma densities and electron temperatures, we determine the conditions at which a reaction is deemed necessary to the plasma model. The results of this study provide a foundation for determining which minimal set of reactions must be included in the reaction set of the plasma model.
The design and optimization of highly nonlinear and complex processes like plasma etching is challenging and timeconsuming. Significant effort has been devoted to creating plasma profile simulators to facilitate the development of etch recipes. Nevertheless, these simulators are often difficult to use in practice due to the large number of unknown parameters in the plasma discharge and surface kinetics of the etch material, the dependency of the etch rate on the evolving front profile, and the disparate length scales of the system. Here, we expand on the development of a previously published, data informed, Bayesian approach embodied in the platform RODEo (Recipe Optimization for Deposition and Etching). RODEo is used to predict etch rates and etch profiles over a range of powers, pressures, gas flow rates, and gas mixing ratios of an CF4/Ar gas chemistry. Three examples are shown: (1) etch rate predictions of an unknown material “X” using simulated experiments for a CF4/Ar chemistry, (2) etch rate predictions of SiO2 in a Plasma-Therm 790 RIE reactor for a CF4/Ar chemistry, and (3) profile prediction using level set methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.