Development of High-NA EUV scanners is maturing and reached the stage of first exposures. Due to the anamorphic 0.55 NA optics, High-NA EUV masks are designed at (4x,-8x) magnification compared to wafer scale (X,Y). Consequently, while dimensions further shrink in X-direction on mask, they relax in Y-direction, resulting in asymmetric mask patterns and new mask perceptions. In this paper, we present a CD-based characterization for a variety of generic patterns on a state-of-the-art High-NA EUV mask, with emphasis on feature dimensions which are specifically relevant to High-NA EUV lithography. The mask metrology is done using an Advantest E3650 mask CD-SEM at imec, with image capture and metrology settings optimized for EUV masks. Besides providing insight into achievable pitches, we touch upon CD linearity for line-space patterns on mask, local roughness and non-uniformity at different length scales, and include a simulation to discuss the transfer of mask variability to wafer variability for a dense contact hole case. Another important aspect which we highlight in this study, is related to the effect of CD errors on mask. Namely, because of the anamorphic imaging, an X/Y symmetric CD offset on mask will lead to asymmetric CD errors at wafer level which can no longer be absorbed e.g. by choice of exposure dose. To avoid these asymmetries at wafer level, it is important to make sure that the mask is well targeted. The latter, however, also depends on choices in metrology settings, which may be ‘historic defaults’ and based on larger dimensions on DUV masks, yet applied to (High-NA) EUV masks. We therefore appeal to mask vendors for a careful verification of metrology settings applied for measurement on (High-NA) EUV masks.
Anamorphic High-Numerical Aperture (NA) EUV photomask manufacturing presents some unique challenges and opportunities in Critical dimension (CD) Scanning electron microscope (SEM) metrology. Novel methods of beam scanning condition are needed to improve image resolution and reduce image blurring to enable reliable metrology for the curvilinear mask era. Additionally, electron optics stigmation monitoring plays a major role in ensuring the horizontal to vertical (X-Y) CD Average to target (ATT) tool matching is not drifting due to aberrations, which are key for anamorphic EUV mask metrology. In this paper, we show the correlation between offsets in Condenser lens, Aperture balance, and electron beam Stigmation offset and its impact on horizontal and vertical feature CD ATT and CD uniformity measurements. Using Advantest E36xx Scanning electron microscopes we also present preliminary results, from improving measurement repeatability (ATT and CDU) on different mask substrates by incorporating Shadow reduction scanning (SRS), enhanced charge suppression using Charge neutralization technology and modulating dose of the beam (which is a function of scan condition and beam condition) In conclusion, we summarize the key metrology advances needed for next generation CD-SEM tools for High NA EUV photomask metrology, such as automated column optics monitoring, shadow reduction scan, design-based site focusing, high degree of measurement precision better than 0.5 nm, charge mitigation capabilities, high Throughput (TPT), enhanced stage performance accuracy, among others.
We have developed novel Design Based Metrology (DBM) technology which enables metrology engineers to utilize not only 2-dimensional metrology with high precision but also high number CPU cores to reduce calculation time. It is crucial to maximize efficiency of parallel processing with high number of CPU cores and reduce overhead. We designed new DBM software based on the concepts of our novel DBM technology and build the DBM PC Cluster system consisting of the software and the latest computer system which meets the concept. The DBM PC Cluster system processing performance shows greater than several thousand images per hour capacity. In this paper, we will report the evaluation results and scalability for future mask metrology.
As the design rule becomes continuously smaller, the Hard OPC is being applied to pattern design in semiconductor
production. Controllability of hard OPCed pattern’s quality directly affects to the performance of the device and yields of
production. Critical Dimension Scanning Electron Microscopy (CD-SEM) is used to accurately confirm the Critical
Dimension (CD) quality of the photomask. CD-SEM makes the pattern’s shape image by using secondary electrons
information directly from the Mask surface and can measure CD values. Classically the purpose of CD-SEM
measurement was to get one dimensional CD values. However it is difficult to guarantee complex hard OPCed pattern’s
quality by using only one dimensional CD values because complexity of pattern design has been increased.
To confirm and control the quality of hard OPCed pattern, the quality of pattern fidelity must be measured
quantitatively. In order to overcome this difficulty we developed a new method to quantitatively evaluate the quality of
pattern fidelity using EPE (Edge Placement Error) distance from the overlay between Target Design GDS and SEM GDS
contour which is extracted from CD-SEM image. This paper represents how to define and analyze quantitatively the
quality of complex hard OPCed pattern.
The 1Xnm technology node lithography is using SMO-ILT, NTD or more complex pattern. Therefore in mask defect inspection, defect verification becomes more difficult because many nuisance defects are detected in aggressive mask feature. One key Technology of mask manufacture is defect verification to use aerial image simulator or other printability simulation. AIMS™ Technology is excellent correlation for the wafer and standards tool for defect verification however it is difficult for verification over hundred numbers or more.
We reported capability of defect verification based on lithography simulation with a SEM system that architecture and software is excellent correlation for simple line and space.[1]
In this paper, we use a SEM system for the next generation combined with a lithography simulation tool for SMO-ILT, NTD and other complex pattern lithography. Furthermore we will use three dimension (3D) lithography simulation based on Multi Vision Metrology SEM system. Finally, we will confirm the performance of the 2D and 3D lithography simulation based on SEM system for a photomask verification.
In a Photomask manufacturing process, mask defect inspection is an increasingly important topic for 193nm optical lithography. Further extension of 193nm optical lithography to the next technology nodes, staying at a maximum numerical aperture (NA) of 1.35, pushes lithography to its utmost limits. This extension from technologies like ILT and SMO requires more complex mask patterns. In mask defect inspection, defect verification becomes more difficult because many nuisance defects are detected in aggressive mask features. One of the solutions is lithography simulation like AIMS. An issue with AIMS, however, is the low throughput of measurement, analysis etc.
KEYWORDS: 3D metrology, Sensors, Atomic force microscopy, 3D image processing, Scanning electron microscopy, Algorithm development, Photomasks, Metrology, Transmission electron microscopy, Time metrology
In next generation lithography (NGL) for the 1x nm node and beyond, the three dimensional (3D) shape measurements such as side wall angle (SWA) and height of feature on photomask become more critical for the process control. Until today, AFM (Atomic Force Microscope), X-SEM (cross-section Scanning Electron Microscope) and TEM (Transmission Electron Microscope) tools are normally used for 3D measurements, however, these techniques require time-consuming preparation and observation. And both X-SEM and TEM are destructive measurement techniques. This paper presents a technology for quick and non-destructive 3D shape analysis using multi-channel detector MVM-SEM (Multi Vision Metrology SEM), and also reports its accuracy and precision.
As design rules of lithography shrink: accuracy and precision of Critical Dimension (CD) and controllability of hard OPCed patterns are required in semiconductor production. Critical Dimension Scanning Electron Microscopes (CD SEM) are essential tools to confirm the quality of a mask such as CD control; CD uniformity and CD mean to target (MTT). Basically, Repeatability and Reproducibility (R and R) performance depends on the length of Region of Interest (ROI). Therefore, the measured CD can easily fluctuate in cases of extremely narrow regions of OPCed patterns. With that premise, it is very difficult to define MTT and uniformity of complex OPCed masks using the conventional SEM measurement approach. To overcome these difficulties, we evaluated Design Based Metrology (DBM) using Large Field Of View (LFOV) of CD-SEM. DBM can standardize measurement points and positions within LFOV based on the inflection/jog of OPCed patterns. Thus, DBM has realized several thousand multi ROI measurements with average CD. This new measurement technique can remove local CD errors and improved statistical methodology of the entire mask to enhance the representativeness of global CD uniformity. With this study we confirmed this new technique as a more reliable methodology in complex OPCed patterns compared to conventional technology. This paper summarizes the experiments of DBM with LFOV using various types of the patterns and compares them with current CD SEM methods.
KEYWORDS: Atomic force microscopy, 3D image processing, 3D metrology, Sensors, Semiconducting wafers, Metrology, Reticles, Line edge roughness, Scanning electron microscopy
A new SEM technology is becoming available that allows image-based 3D profile metrology of nanoscale features. Using patented multi-channel detector technology, this system can acquire information of surface concave and convex features, and sidewall angle (SWA) and height of profiles, quickly and non-destructively for nanoscale structures such as fin field-effect transistors (FinFETs), using electron beam technology with its well-known long probe lifetime, stability and small probe size. Here we evaluate this new technology and demonstrate its applicability to contemporary advanced structures such as FinFETs, including not only CD, but also profile, SWA, top corner rounding (TCR) and bottom corner rounding (BCR).
Bright-field photomasks are used to print small contact holes via ArF immersion multiple patterning lithography. There
are some technical difficulties when small floating dots are to be measured by SEM tools because of a false imaging
shadow. However, a new scan technology of Multi Vision Metrology SEMTM E3630 presents a solution for this issue. The combination of new scan technology and the other MVM-SEM® functions can provide further extended applications with more accurate measurement results.
The detection and management of mask defects which are transferred onto wafer becomes more important day by day.
As the photomask patterns becomes smaller and more complicated, using Inverse Lithography Technology (ILT) and
Source Mask Optimization (SMO) with Optical Proximity Correction (OPC).
To evaluate photomask quality, the current method uses aerial imaging by optical inspection tools. This technique at
1Xnm node has a resolution limit because small defects will be difficult to detect.
We already reported the MEEF influence of high-end photomask using wide FOV SEM contour data of "E3630
MVM-SEM®" and lithography simulator "TrueMask® DS" of D2S Inc. in the prior paper [1].
In this paper we evaluate the correlation between our evaluation method and optical inspection tools as ongoing
assessment.
Also in order to reduce the defect classification work, we can compose the 3 Dimensional (3D) information of defects
and can judge whether repairs of defects would be required.
Moreover, we confirm the possibility of wafer plane CD measurement based on the combination between E3630
MVM-SEM® and 3D lithography simulation.
KEYWORDS: 3D metrology, Sensors, 3D image processing, Atomic force microscopy, 3D vision, 3D acquisition, Extreme ultraviolet, Scanning electron microscopy, Phase measurement, Electron beams
We have studied MVM (Multi Vision Metrology) -SEM® E3630 to measure 3D shape of defects. The four detectors
(Detector A, B, C and D) are independently set up in symmetry for the primary electron beam axis. Signal processing
of four direction images enables not only 2D (width) measurement but also 3D (height) measurement. At last PMJ,
we have investigated the relation between the E3630’s signal of programmed defect on MoSi-HT and defect height
measured by AFM (Atomic Force Microscope). It was confirmed that height of integral profile by this tool is
correlated with AFM. It was tested that E3630 has capability of observing multilayer defect on EUV. We have
investigated correlation with AFM of width and depth or height of multilayer defect.
As the result of observing programmed defects, it was confirmed that measurement result by E3630 is well
correlated with AFM. And the function of 3D view image enables to show nm order defect.
To evaluate photomask quality, the current method uses spatial imaging by optical inspection tools. This technique at 1Xnm node has a resolution limit because small defects will be difficult to extract. To simulate the mask error-enhancement factor (MEEF) influence for aggressive OPC in 1Xnm node, wide FOV contour data and tone information are derived from high precision SEM images. For this purpose we have developed a new contour data extraction algorithm with sub-nanometer accuracy resulting in a wide Field of View (FOV) SEM image: (for example, more than 10um x 10um square). We evaluated MEEF influence of high-end photomask pattern using the wide FOV contour data of "E3630 MVM-SEMTM" and lithography simulator "TrueMaskTM DS" of D2S, Inc. As a result, we can detect the "invisible defect" as the MEEF influence using the wide FOV contour data and lithography simulator.
KEYWORDS: Scanning electron microscopy, Photomasks, Metrology, Electron beam lithography, Line scan image sensors, Electron beams, Lithography, Semiconductors, Capacitance, Absorption
As an alternative to EUV lithography, ArF immersion multiple patterning lithography has been heavily employed in
semiconductor fabrication. This situation has led to increase use of bright-field photomasks with floating small patterns.
Latest CDSEMs are equipped with various charge compensation features and applicable for devices with conductive
and insulating material. However, there remain some difficulties when floating small patterns are to be measured. One
of the specific examples is a floating dot on a via mask, dimension of which is around 200nm at the 45 nm process
node, scaling down to 100nm at the 22nm process node. Since the dot has very small capacitance, it is easily charged by
electron beam irradiation, and discharged in a short period. This kind of temporary voltage variation can affect the
secondary electron yield, causes degradation of the SEM image contrast. We have analyzed that the "edge effect",
which is the principle of SEM, has a primary role in small dot charging, and interchanging of scan line effectively
suppresses the voltage variation. Based on this concept, we have developed a new scan technology for our "Multi
Vision Metrology SEM" E3630, and improved the performance of image-based measurement. In this paper, the new
scan technology and evaluation results are presented.
KEYWORDS: Sensors, Signal detection, Photomasks, Algorithm development, 3D metrology, Polonium, Metrology, Scanning electron microscopy, Electron beams, Detection and tracking algorithms
A new metrology method for CD-SEM has been developed to measure the side wall angle of a pattern on photomask. The
height and edge width of pattern can be measured by the analysis of the signal intensity profile of each channel from multiple
detectors in CD-SEM.
The edge width is measured by the peak width of the signal intensity profile. But it is not possible to measure the accurate
edge width of the pattern, if the edge width is smaller than the primary electron beam diameter. Using four detectors, the
edge width can be measured by the peak width which appears on the subtracting signal profile of two detectors in opposition
to each other. Therefore, the side wall angle can be calculated if the pattern height is known.
The shadow of the side wall appears in the signal profile from the detector of the opposite side of the side wall.
Furthermore, we found that there was the proportional relation between pattern height and the shadow length of the signal on
one side.
This paper describes a method of measuring the side wall width of a pattern and experimental results of the side wall angle
measurements.
KEYWORDS: Sensors, Atomic force microscopy, Signal detection, Photomasks, Etching, 3D metrology, Tantalum, Critical dimension metrology, Scanning electron microscopy, Extreme ultraviolet
The Multiple Detector CD-SEM acquires the secondary electron from pattern surface at each detector. The 3D shape
and height of mask patterns are generated by adding or subtracting signal profile of each detector. In signal profile of the
differential image formed in difference between left and right detector signal, including concavo-convex information of
mask patterns. Therefore, the 3D shape of mask patterns can be obtained by integrating differential signal profile. This
time, we found that proportional relation between pattern height and shadow length on one side of pattern edge. In this
paper, we will report experimental results of pattern height measurement. The accuracy of measurement and side wall
angle dependency are studied. The proposal method is applied to OMOG masks.
KEYWORDS: Scanning electron microscopy, Photomasks, Critical dimension metrology, Electron beams, Metrology, Electron microscopes, Process control, OLE for process control, Image resolution, Beam controllers
Measurement of resist critical dimensions (CDs) utilizing a scanning electron microscope (SEM)
based metrology system causes the resist to change due to irradiation effects of the electrons. A new
and novel scanning approach has been developed in an effort to minimize the effects electron
irradiation and exposure during the measurement process. This technique is especially pertinent in
view of the tightening requirements for process control to achieve single digit CD uniformity on
leading edge photo masks being produced today. The measurement of OPC features necessitates
utilization of SEM based metrology due to resolution requirements, but the effects of high
magnification imaging presents unique challenges. By controlling the scanned region of interest
(ROI) it is possible to reduce exposure and irradiation effects. This paper will detail this new
approach as it is utilized on the LWM9045 SEM Metrology system. The LWM9000SEM mask CD
SEM was introduced earlier.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.