The Long-Range Reconnaissance Imager (LORRI) is a high-resolution imaging instrument on the New Horizons spacecraft. LORRI collected over 5000 images during the approach and fly-by of the Pluto system in 2015, including the highest resolution images of Pluto and Charon and the four much smaller satellites (Styx, Nix, Kerberos, and Hydra) near the time of closest approach on 14 July 2015. LORRI is a narrow field of view (0.29°), Ritchey-Chrétien telescope with a 20.8 cm diameter primary mirror and a three-lens field flattener. The telescope has an effective focal length of 262 cm. The focal plane unit consists of a 1024 × 1024 pixel charge-coupled device (CCD) detector operating in frame transfer mode. LORRI provides panchromatic imaging over a bandpass that extends approximately from 350 nm to 850 nm. The instrument operates in an extreme thermal environment, viewing space from within the warm spacecraft. For this reason, LORRI has a silicon carbide optical system with passive thermal control, designed to maintain focus without adjustment over a wide temperature range from -100 C to +50 C. LORRI operated flawlessly throughout the encounter period, providing both science and navigation imaging of the Pluto system. We describe the preparations for the Pluto system encounter, including pre-encounter rehearsals, calibrations, and navigation imaging. In addition, we describe LORRI operations during the encounter, and the resulting imaging performance. Finally, we also briefly describe the post-Pluto encounter imaging of other Kuiper belt objects and the plans for the upcoming encounter with KBO 2014 MU69.
A subscale radio frequency (RF) and infrared (IR) testbed using novel RF-photonics techniques for generating radar
waveforms is currently under development at The Johns Hopkins University Applied Physics Laboratory (JHU/APL) to
study target scenarios in a laboratory setting. The linearity of Maxwell’s equations allows the use of millimeter
wavelengths and scaled-down target models to emulate full-scale RF scene effects. Coupled with passive IR and visible
sensors, target motions and heating, and a processing and algorithm development environment, this testbed provides a
means to flexibly and cost-effectively generate and analyze multi-modal data for a variety of applications, including
verification of digital model hypotheses, investigation of correlated phenomenology, and aiding system capabilities
assessment. In this work, concept feasibility is demonstrated for simultaneous RF, IR, and visible sensor measurements
of heated, precessing, conical targets and of a calibration cylinder. Initial proof-of-principle results are shown of the
Ka-band subscale radar, which models S-band for 1/10th scale targets, using stretch processing and Xpatch models.
The LOng-Range Reconnaissance Imager (LORRI) is the high resolution imager for the New Horizons mission to the
Pluto system and the Kuiper Belt, which is the vast region of icy bodies extending roughly from 30 to 50 astronomical
units (AU). LORRI is a monolithic SiC, Ritchey-Chrétien telescope with a 20.8 cm diameter primary mirror and with an
0.29° field of view. The detector is a thinned, backside-illuminated charge-coupled device (CCD) operated in frame
transfer mode to obtain 1024 × 1024 pixel, panchromatic images over a bandpass of approximately 350 nm to 850 nm
with 4.96 μrad pixels. LORRI operated successfully at the New Horizons Jupiter encounter in Feb-Mar 2007 and made
challenging observations of faint sources, such as the Jovian rings within a few degrees of sunlit Jupiter and the
nightside of Io illuminated by Jupiter shine. Ambitious observations are planned at Pluto encounter including some with
LORRI pointed within 15° of the Sun. A unique program of inflight calibrations has measured LORRI's stray light
rejection using Jupiter and the Sun. The measured point source transmittance (PST) function for LORRI decreases from
145 on axis to 4×10-10 at 75° off-axis.
The LOng-Range Reconnaissance Imager (LORRI) is a high resolution imaging instrument on the New Horizons
spacecraft. New Horizons will collect data during a fly-by of Pluto and its satellites in 2015, and may continue on to
collect data at another Kuiper Belt Object in an extended mission phase. New Horizons launched on January 19, 2006,
the first mission of NASA's New Frontiers program. LORRI is a narrow field of view (0.29°), Ritchey-Chrétien
telescope with a 20.8 cm diameter primary mirror. The telescope has an effective focal length of 262 cm and has a three
lens field flattener near the focal plane. The focal plane unit consists of a 1024 × 1024 pixel charge-coupled device
detector operating in frame transfer mode. LORRI provides panchromatic imaging over a bandpass that extends
approximately from 350 nm to 850 nm. The instrument operates in an extreme thermal environment, viewing space
from within the warm spacecraft. For this reason, LORRI has a silicon carbide optical system with passive thermal
control, designed to maintain focus without adjustment over a wide temperature range from -100 C to +50 C.
LORRI has been successfully operated through initial commissioning, a fly-by of Jupiter, and two annual checkout
periods. We describe the in-flight testing and measured performance of LORRI, and provide comparisons to pre-launch
performance predictions. We also detail plans under consideration for changing LORRI's flight software to
accommodate autonomous detection of targets within the instrument's field of view.
The authors have worked in the past year on integration, characterization, and calibration of The Johns Hopkins University Applied Physics Laboratory's (JHU/APL's) Infrared Seeker Space Calibration and Test facility, a cryogenic-vacuum chamber designed to test infrared seekers that detect targets against low-radiance backgrounds. The facility includes target-like infrared sources with well-known and controllable radiometric attributes and well-known and
controllable size, position, and motion. This paper summarizes the basic facility design, capabilities, concept of operations, current and projected uses, challenges, and lessons learned. It describes the chamber calibration and characterization activities conducted jointly by JHU/APL and the National Institute of Standards and Technology (NIST). In particular, this includes a description of the calibration and characterization methodology, modeling of the chamber optical path from the chamber target source module to the unit-under-test entrance aperture, ongoing calibration of the target source module at NIST with an absolute cryogenic radiometer, and planned end-to-end calibration of the chamber at JHU/APL using NIST's transfer radiometer and JHU/APL's field spectroradiometer.
The LOng-Range Reconnaissance Imager (LORRI) is a panchromatic imager for the New Horizons Pluto/Kuiper belt mission. New Horizons is being prepared for launch in January 2006 as the inaugural mission in NASA's New Frontiers program. This paper discusses the calibration and characterization of LORRI.
LORRI consists of a Ritchey-Chretien telescope and CCD detector. It provides a narrow field of view (0.29°), high resolution (pixel FOV = 5 μrad) image at f/12.6 with a 20.8~cm diameter primary mirror. The image is acquired with a 1024 x 1024 pixel CCD detector (model CCD 47-20 from E2V). LORRI was calibrated in vacuum at three temperatures covering the extremes of its operating range (-100°C to +40°C for various parts of the system) and its predicted nominal temperature in-flight. A high pressure xenon arc lamp, selected for its solar-like spectrum, provided the light source for the calibration. The lamp was fiber-optically coupled into the vacuum chamber and monitored by a calibrated photodiode. Neutral density and bandpass filters controlled source intensity and provided measurements of the wavelength dependence of LORRI's performance. This paper will describe the calibration facility and design, as well as summarize the results on point spread function, flat field, radiometric response, detector noise, and focus stability over the operating temperature range.
LORRI was designed and fabricated by a combined effort of The Johns Hopkins University Applied Physics Laboratory (APL) and SSG Precision Optronics.
Calibration was conducted at the Diffraction Grating Evaluation Facility at NASA/Goddard Space Flight Center with additional characterization measurements at APL.
S. Conard, F. Azad, J. Boldt, A. Cheng, K. Cooper, E. Darlington, M. Grey, J. Hayes, P. Hogue, K. Kosakowski, T. Magee, M. Morgan, E. Rossano, D. Sampath, C. Schlemm, H. Weaver
The LOng-Range Reconnaissance Imager (LORRI) is an instrument that was designed, fabricated, and qualified for the New Horizons mission to the outermost planet Pluto, its giant satellite Charon, and the Kuiper Belt, which is the vast belt of icy bodies extending roughly from Neptune's orbit out to 50 astronomical units (AU). New Horizons is being prepared for launch in January 2006 as the inaugural mission in NASA's New Frontiers program. This paper provides an overview of the efforts to produce LORRI. LORRI is a narrow angle (field of view=0.29°), high resolution (instantaneous field of view = 4.94 μrad), Ritchey-Chretien telescope with a 20.8 cm diameter primary mirror, a focal length of 263 cm, and a three lens field-flattening assembly. A 1024 x 1024 pixel (optically active region), back-thinned, backside-illuminated charge-coupled device (CCD) detector (model CCD 47-20 from E2V Technologies) is located at the telescope focal plane and is operated in standard frame-transfer mode. LORRI does not have any color filters; it provides panchromatic imaging over a wide bandpass that extends approximately from 350 nm to 850 nm. A unique aspect of LORRI is the extreme thermal environment, as the instrument is situated inside a near room temperature spacecraft, while pointing primarily at cold
space. This environment forced the use of a silicon carbide optical system, which is designed to maintain focus over the operating temperature range without a focus adjustment mechanism. Another challenging aspect of the design is that the spacecraft will be thruster stabilized (no reaction wheels), which places stringent limits on the available exposure time and the optical throughput needed to accomplish the high-resolution observations required.
LORRI was designed and fabricated by a combined effort of The Johns Hopkins University Applied Physics Laboratory (APL) and SSG Precision Optronics Incorporated (SSG).
Jeffery Warren, Kevin Heffernan, Steven Conard, James Bell, Anita Cochran, John Boldt, Alice Bowman, E. Darlington, Anthony Deluzio, Daniel Fiore, Dennis Fort, David Garcia, Matthew Grey, Bruce Gotwols, Ann Harch, John Hayes, Gene Heyler, Linda Howser, David Humm, Noam Izenberg, Kris Kosakowski, W. Lees, D. Lohr, Holger Luther, Douglas Mehoke, Scott Murchie, R. Alan Reiter, Brian Rider, G. Rogers, Deepak Sampath, Edward Schaefer, Thomas Spisz, Kim Strohbehn, Scott Svenson, Howard Taylor, Patrick Thompson, Joseph Veverka, Robert Williams, Paul Wilson
The CONTOUR Remote Imager and Spectrometer (CRISP) was a multi-function optical instrument developed for the Comet Nucleus Tour Spacecraft (CONTOUR). CONTOUR was a NASA Discovery class mission launched on July 3, 2002. This paper describes the design, fabrication, and testing of CRISP. Unfortunately, the CONTOUR spacecraft was destroyed on August 15, 2002 during the firing of the solid rocket motor that injected it into heliocentric orbit. CRISP was designed to return high quality science data from the solid nucleus at the heart of a comet. To do this during close range (order 100 km) and high speed (order 30 km/sec) flybys, it had an autonomous nucleus acquisition and tracking system which included a one axis tracking mirror mechanism and the ability to control the rotation of the spacecraft through a closed loop interface to the guidance and control system. The track loop was closed using the same images obtained for scientific investigations. A filter imaging system was designed to obtain multispectral and broadband images at resolutions as good as 4 meters per pixel. A near IR imaging
spectrometer (or hyperspectral imager) was designed to obtain spectral signatures out to 2.5 micrometers with resolution of better than 100 meters spatially. Because of the high flyby speeds, CRISP was designed as a highly automated instrument with close coupling to the spacecraft, and was intended to obtain its best data in a very short period around closest approach. CRISP was accompanied in the CONTOUR science payload by CFI, the CONTOUR Forward Imager. CFI was optimized for highly sensitive observations at greater ranges. The two instruments provided highly complementary optical capabilities, while providing some degree of functional redundancy.
Steven Conard, Jeffery Warren, Olivier Barnuoin-Jha, James Bell, John Boldt, Alice Bowman, Anita Cochran, E. Darlington, Anthony Deluzio, Daniel Fiore, David Garcia, Bruce Gotwols, Matthew Grey, Ann Harch, John Hayes, Kevin Heffernan, David Humm, Noam Izenberg, Kris Kosakowski, Holger Luther, Douglas Mehoke, Scott Murchie, Louise Prockter, Brian Rider, Deepak Sampath, Edward Schaefer, Scott Svenson, Howard Taylor, Patrick Thompson, Joseph Veverka, Robert Williams, Paul Wilson
A filtered imager, the CONTOUR Forward Imager (CFI), was designed, fabricated, and qualified for the Comet Nucleus Tour (CONTOUR) Discovery class mission. The CONTOUR spacecraft was launched July 3, 2002, and failed during injection to heliocentric orbit on August 15, 2002. This paper provides an overview of the efforts to produce CFI.
The CFI imager was designed to perform optical navigation, comet nucleus imaging, and comet coma imaging. CFI was complemented in the CONTOUR payload by the CONTOUR Remote Imager and Spectrometer (CRISP). The emphasis in the CFI design was on high sensitivity at moderate to long ranges from the comet nucleus, while CRISP was designed for high-speed observations in close to the nucleus. A unique aspect of CFI was the requirement to image multiple comets after being exposed to high-velocity cometary dust on the
previous comet flybys (which damages and contaminates the forward looking optics). The first optical surface was replaceable between comet encounters, using a mirror "cube" mechanism, to alleviate the dust damage. Another challenging aspect of the design is that the spacecraft was thruster stabilized (no reaction wheels), placing limits on the available exposure time to accomplish the high sensitivity observations required.
CFI utilized ten filters covering from 300 to 920 nm to image onto a backthinned 1024 by 1024 element CCD. The Ritchie-Chrietien telescope provided a clear aperture of 62 mm, a full field of view of 2.5 degrees, and a pixel field of view of 43 microradians. CFI was designed and fabricated by a combined effort of the Johns Hopkins University Applied Physics Laboratory and SSG Precision Optronics. The CONTOUR mission was lost prior to CFI being powered on in flight.
The Far Ultraviolet Spectroscopic Explorer is a NASA astrophysics satellite which produces high-resolution spectra in the far-ultraviolet (90.5 - 118.7 nm bandpass) using a high effective area and low background detectors. The observatory was launched on its three-year mission from Cape Canaveral Air Station on 24 June 1999. The instrument contains four co- aligned, normal incidence, off-axis parabolic mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographically ruled diffraction gratings and delay line microchannel plate detectors. The telescope mirrors have a 352 X 387 mm aperture and 2245 mm focal length and are attached to actuator assemblies, which provide on-orbit, tip, tilt, and focus control. Two mirrors are coated with silicon carbide (SiC) and two are coated with lithium fluoride over aluminum (Al:LiF). We describe mirror assembly in-flight optical and mechanical performance. On-orbit measurements of the far-ultraviolet point spread function associated with each mirror are compared to expectations based on pre-flight laboratory measurements and modeling using the Optical Surface Analysis Code and surface metrology data. On-orbit imaging data indicate that the mirrors meet their instrument-level requirement of 50% and 95% slit transmission for the high- and mid-resolution spectrograph entrance slits, respectively. The degradation of mirror reflectivity during satellite integration and test is also discussed. The FUV reflectivity of the SiC- and Al:LiF-coated mirrors decreased about 6% and 3%, respectively, between coating and launch. Each mirror is equipped with three actuators, which consist of a stepper motor driving a ball screw via a two-stage planetary gear train. We also discuss the mechanical performance of the mirror assemblies, including actuator performance and thermal effects.
The Far Ultraviolet Spectroscopic Explorer (FUSE) satellite was launched on June 24, 1999. FUSE is designed to make high resolution ((lambda) /(Delta) (lambda) equals 20,000 - 25,000) observations of solar system, galactic, and extragalactic targets in the far ultraviolet wavelength region (905 - 1187 angstrom). Its high effective area, low background and planned three year life allow observations of objects which have been too faint for previous high resolution instruments in this wavelength range. FUSE has now been in orbit for one year. We discuss the accomplishments of the FUSE mission during this time, and look ahead to the future now that normal operations are under way.
The Far Ultraviolet Spectroscopic Explorer (FUSE) is a NASA astrophysics satellite designed to produce high resolution spectra in the far-ultraviolet (90.5-118.7 nm bandpass) with a high effective area (20-70 cm2) and low background detector. It was launched on a three-year mission in June 1999 aboard a Boeing Delta II rocket. The satellite has been performing routine science observations since December 1999. FUSE contains four co-aligned, normal incidence, off-axis parabolic primary mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographically ruled diffraction gratings and microchannel plate detectors. Fine error sensors (slit jaw cameras) operating in the visible on two of the channels are used for target acquisition and guiding. The FUSE mission was first proposed in the late 1980s, and experienced several major conceptual changes prior to fabrication, assembly, and testing, which lasted from 1996 through 1999. During the program, we realized both positive and negative aspects to our design and processes that may apply to other space missions using telescopes and spectrographs. The specific topics we address are requirements, design, component specification, integration, and verification. We also discuss on-orbit alignment and focus. These activities were complicated by unexpected levels of motion between the optical elements, and the logistical problems associated with limited ground contact passes in low Earth orbit. We have developed methods to characterize the motions and mitigate their resultant effects on the science data through a combination of observing techniques and modifications to the data reduction software.
The Far Ultraviolet Spectroscopic Explorer (FUSE) satellite was launched into orbit on June 24, 1999. FUSE is now making high resolution ((lambda) /(Delta) (lambda) equals 20,000 - 25,000) observations of solar system, galactic, and extragalactic targets in the far ultraviolet wavelength region (905 - 1187 angstroms). Its high effective area, low background, and planned three year life allow observations of objects which have been too faint for previous high resolution instruments in this wavelength range. In this paper, we describe the on- orbit performance of the FUSE satellite during its first nine months of operation, including measurements of sensitivity and resolution.
The FUSE, successfully launched in June 1999, is an astrophysics satellite designed to provide high spectral resolving power over the interval 90.5-118.7 nm. The FUSE optical path consists of four co-aligned, normal incidence, off-axis parabolic mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographic gratings and delay line microchannel plate detectors. We describe the hardware and methods used for the optical 'end- to-end' test of the FUSE instrument during satellite integration and test. Cost and schedule constraints forced us to devise a simplified version of the planned optical test which occurred in parallel with satellite thermal- vacuum testing. The optical test employed a collimator assembly which consisted of four co-aligned, 381 mm diameter Cassegrain telescopes positioned above the FUSE instrument, providing a collimated beam for each optical channel. A windowed UV light source, remotely adjustable in three axes, was mounted at the focal plane of each collimator. Problems with the UV light sources, including high f-number and window failures, were the only major difficulties encountered during the test. The test succeeded in uncovering a significant problem with the secondary structure used for the instrument cavity and, furthermore, showed that the mechanical solution was successful, the hardware was also used extensively for simulations of science observations, providing both UV light for spectra and visible light for the fine error sensor camera.
The FUSE is an astrophysics mission especially designed to access the quite rich spectral region between 90.5 nm and 118.7 nm with a high spectral resolving power. The FUSE instrument contains four identical off-axis paraboloid telescope mirrors and four spherical diffraction gratings. Two mirrors and two gratings are coated with silicon carbide (SiC) and have a bandpass of 90.5 nm to 110.0 nm. The remaining two mirrors and gratings are coated with lithium fluoride (LiF) over aluminum (Al) providing about twice the reflectivity of the SiC at wavelengths larger than 105.0 nm but very little reflectivity below 102.0 nm. The Far UV reflectivity of the Al + LiF coated FUSE optics is very sensitivity to moisture and molecular hydrocarbon contamination. To avoid degradation of the reflectivity all optics testing and handling has been carefully controlled to minimize the exposure of the coating to ambient air. In general the optical surfaces were kept in nitrogen purged enclosures. We report on a simple test program in which small Al + LiF witness mirrors were stored in different relative humidity (RH) environments in order to study the degradation of their reflectivity between 92.7 nm and 121.6 nm as a function of time. The result of this study were used to establish guidelines for storage and test environments for FUSE optics prior to launch. Our methods and results are then compared to a similar aging study performed by the NASA/GSFC Optical Thin Film Laboratory.
The FUSE is an astrophysics satellite designed to make observations at high spectral resolving power in the 90.5- 118.7 nm bandpass. This NASA Origins mission will address many important astrophysical problems, including the variations in the deuterium/hydrogen ratio in the Milky Way and in extragalactic clouds, the kinematics and distribution of O5+ and other hot gas species in the Galactic disk and halo, the properties of molecular hydrogen in interstellar clouds having a wide variety of temperatures and densities, and the properties of stellar and planetary atmospheres. Between August 1997 and January 1999 an extensive series of vacuum optical test was conducted, first with the spectrograph alone and then with the full satellite in flight-like conditions. Numerous UV spectra were obtained and found to be consistent with performance requirements. We also obtained visible light images with the fine error sensor camera, whose performance will be critical for meeting the demanding pointing requirements of FUSE. In this paper we present estimates of the performance of the instrument, including spectral resolution, line shapes, and effective area. We also present data on the visible light performance of the FES.
The FUSE, scheduled for a summer 1999 launch, is an astrophysics satellite designed to provide high spectral resolving power over the interval 90.5-118.7 nm. The FUSE optical path consists of four co-aligned, normal incidence, off-axis parabolic primary mirrors which illuminate separate Rowland circle spectrograph channels equipped with holographic gratings and delay line microchannel plate detectors. The spectrograph comprises the upper half of the instrument structure, and was internally aligned prior to delivery to the integration team.
The Far Ultraviolet Spectroscopic Explorer (FUSE) is an astrophysics satellite currently being designed to provide high spectral resolving power ((lambda) /(Delta) (lambda) approximately equals 30,000) observations in the interval 853 - 1248 angstrom, and moderate resolving power ((lambda) /(Delta) (lambda) > 500) over the extended interval 800 - 1600 angstrom. It consists of four co-aligned normal incidence mirrors which illuminate separate Rowland circle spectrograph channels with holographic gratings and delay line microchannel plate detectors. Two telescope mirrors are made of chemical vapor deposited SiC on a reaction bonded SiC substrate, and the remaining two have an Al+LiF coating on Zerodur substrates. The off-axis parabolic mirrors have stringent reflectivity, imaging, lightweighting, and mounting requirements. Important aspects of the optical and mechanical design are discussed, including the surface accuracy requirements on different spatial scales, from microroughness to full figure errors. Also discussed are the mirror lightweighting requirements.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.