T. Nogami, S. Lane, M. Fukasawa, K. Ida, M. Angyal, K. Chanda, F. Chen, C. Christiansen, S. Cohen, M. Cullinan, C. Dziobkowski, J. Fitzsimmons, P. Flaitz, A. Grill, J. Gill, K. Inoue, N. Klymko, K. Kumar, C. Labelle, M. Lane, B. Li, E. Liniger, A. Madon, K. Malone, J. Martin, V. McGahay, P. McLaughlin, I. Melville, M. Minami, S. Molis, S. Nguyen, C. Penny, D. Restaino, A. Sakamoto, M. Sankar, M. Sherwood, E. Simonyi, Y. Shimooka, L. Tai, J. Widodo, H. Wildman, M. Ono, D. McHerron, H. Nye, C. Davis, S. Sankaran, D. Edelstein, T. Ivers
KEYWORDS: Chemical mechanical planarization, Plasma, Back end of line, Photomasks, Manufacturing, Copper, Plasma enhanced chemical vapor deposition, Etching, Capacitance, Reliability
This paper discusses low-k/copper integration schemes which has been in production in the 90 nm node, have been developed in the 65 nm node, and should be taken in the 45 nm node. While our baseline 65 nm BEOL process has been developed by extension and simple shrinkage of our PECVD SiCOH integration which has been in production in the 90 nm node with our SiCOH film having k=3.0, the 65 nm SiCOH integration has two other options to go to extend to lower capacitance. One is to add porosity to become ultra low-k (ULK). The other is to stay with low-k SiCOH, which is modified to have a "lower-k". The effective k- value attained with the lower-k (k=2.8) SiCOH processed in the "Direct CMP" scheme is very close to that with an ULK (k=2.5) SiCOH film built with the "Hard Mask Retention" scheme. This paper first describes consideration of these two damascene schemes, whose comparison leads to the conclusion that the lower-k SiCOH integration can have more advantages in terms of process simplicity and extendibility of our 90 nm scheme under certain assumptions. Then describing the k=2.8 SiCOH film development and its successful integration, damascene schemes for 45nm nodes are discussed based on our learning from development of the lower-k 65nm scheme. Capability of modern dry etchers to define the finer patterns, non-uniformity of CMP, and susceptibility to plasma and mechanical strength and adhesion of ULK are discussed as factors to hamper the applicability of ULK.
Filling of high aspect ratio vias with electroplated copper requires smooth and continuous seed layer whereas prevention of copper diffusion into the adjacent dielectric requires adequate coverage of the barrier along the via sidewalls. Conventional PVD DC magnetron techniques were found to be inadequate for this application, because of insufficient step coverage especially that of Cu on the sidewalls of the high aspect ratio vias, and its agglomeration into discontinuous islands. Ionized metal plasma (IMP) based PVD technology provided superior step coverage of Ta and Cu because of the directionality of the deposited atoms and utilization of ion bombardment to sputter material from the bottom of the via to the sidewalls, thus yielding continuous and conformal barrier and seed layers. Furthermore, the seed layer morphology especially the roughness of the film on the sidewall was found to be quite sensitive to the deposition temperature. The seed layer thickness and film morphology, as well as other deposition parameters as the ratio of coil RF & target DC plasma powers, Ar sputtering pressure, wafer bias and the Ar sputter etch prior to barrier deposition, were all found to affect the subsequent via filling by electroplating. Optimization of the processes enabled filling of high aspect ratio vias. Manufacturability and the process window for the barrier/seed layer processes was evaluated by extended runs and DOEs. The technology was successfully integrated into a multilevel interconnect scheme utilizing Cu plugs, and Cu damascene lines. The via resistance of the Cu plug using this metallization scheme, was found to be significantly lower than that of W plug currently used for Al interconnects. The cost of ownership (COO) of the IMP Ta/Cu seed layer was determined to be significantly lower compared to the current state-of- the-art IMP Ti/CVD TiN liner for W plug.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.