Reinforcement Learning holds the potential to enable many systems with rapid, intelligent automated decision- making. However, reinforcement learning on embodied systems is a much greater challenge than the simulated environments and tasks which have been solved to date. A learner in an embodied system cannot run millions of trials or easily tolerate fatal trajectories. Therefore, the ability to train agents in simulated environments and effectively transfer their knowledge to real-world environments will be crucial, and likely an integral part of constructing future robotic systems. We perform experiments in an original transfer reinforcement learning task we constructed using the game “Sonic 3 and Knuckles," evaluating two transfer learning techniques from the literature.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.