TriLumina develops and manufactures flip-chip VCSEL technology used in 3D sensing applications that must meet automotive grade 1 temperature range (-40˚C to 125˚C) performance and be tested to high reliability standards and criteria (AEC-Q102). Advances in VCSEL efficiency, performance and automotive qualification of TriLumina’s selfhermetic flip-chip VCSEL are discussed. TriLumina’s VCSEL-on-board (VoB), surface-mount technology VCSEL is introduced.
This paper will review the device design and performance of Broadcom’s 50Gb/s PAM-4 VCSEL to enable the next generation of transceivers using a PAM-4 advanced modulation scheme at 25-28 GBd. The VCSEL has been optimized to minimize noise and improve dynamic performance for cleaner eyes. Preliminary wear out lifetime studies indicate that the time to 1% failure exceeds 10 years, making the VCSELs suitable for data communication applications.
Mode partition noise (MPN) can become the dominant limitation in 850 nm VCSEL-based multi-mode fiber (MMF) links at high data rates. Fluctuations in the partition of energy between the transverse modes of the VCSEL combined with the chromatic dispersion in the fiber leads to intensity noise at the receiver. The impact of MPN on non-equalized and equalized links has been studied with a numerical model of the VCSEL and MMF. The MPN in 25 Gb/s VCSELs has been investigated by examining noise in individual mode groups isolated using a thin film Fabry-Perot filter. The measured k factor below 0.15 should enable links significantly longer than 100 m at 25 Gb/s and higher data rates.
Avago’s 850nm VCSELs for applications requiring modulation at 25-28Gbps have been designed for -3dB bandwidths in excess of 19GHz over the extended temperature range of 0-85°C. The DBR mirrors have been optimized to minimize optical losses and thermal and electrical resistance. The active region is designed to provide superior differential gain for high optical bandwidth. In this paper we will describe the design for performance and manufacturability of Avago’s high speed 25-28Gbps VCSEL. Analysis of the high-speed modulation characteristics and results of wearout reliability studies will be presented. We will also discuss the manufacturability of this next generation of high performance, reliable lasers. The challenges of epitaxial growth and wafer fabrication along with the associated process control technologies will be described.
Avago’s 850nm oxide VCSEL for applications requiring modulation at 25-28G has been designed for -3dB bandwidths in excess of 18GHz over an extended temperature range of 0-85C. The VCSEL has been optimized to minimize DBR mirror thermal resistivity, electrical resistance and optical losses from free carrier absorption. The active region is designed for superior differential gain to enable high optical bandwidths. The small-signal modulation response has been characterized and the large-signal eye diagrams show excellent high-speed performance. Characterization data on other link parameters such as relative intensity noise and spectral width will also be presented.
Applications of 850 nm VCSELs have bloomed in recent years arising from their low cost, and the ease of forming one- and two-dimensional arrays. In addition to the traditional measures of device lifetime, operation over a wide temperature range and link length, the figures of merit increasingly include power consumption (pJ/bit), footprint (bits/mm2) and cost ($/Gb/s). As 1 × 12 arrays of 10G VCSELs are widely adopted, there is a clear need for improvement along all these fronts. This is achieved through development of VCSELs operating at higher data rates, and modifications to the oxide VCSEL structure. In this paper, we discuss the development of VCSELs with electrostatic discharge protection, and high bandwidth for operation at 10 – 25 Gb/s.
Results on new 850nm and 1310nm VCSEL products under development at JDSU will be presented with emphasis on
reliability criteria, advances in performance, and interconnect design. An update will also be provided on JDSU's
effort to introduce 10Gpbs LW VCSEL based components and modules into the marketplace.
Luke Graham, Jack Jewell, Kevin Maranowski, Max Crom, Stewart Feld, Joseph Smith, James Beltran, Thomas Fanning, Melinda Schnoes, Matthew Gray, David Droege, Vera Koleva, Mike Dudek, John Fiers, Russ Patterson
This article outlines development work at JDSU on InGaNAs based vertical cavity surface emitting lasers (VCSELs)
operating at 1270nm and their use in 10Gbps SFP+ modules. DC and AC performance of die and transmit optical
subassemblies (TOSAs) will be described. Due to their low power consumption, LW VCSELs are ideal for use in
SFP+; module performance will be described as well.
Beginning with 4 Gigabit/sec Fibre-Channel, 1310nm vertical-cavity surface-emitting lasers (VCSELs) are now entering the marketplace. Such VCSELs perform like distributed feedback lasers but have drive currents and heat dissipation like 850nm VCSELs, making them ideal for today's high-performance interconnects and the only choice for the next step in increased interconnection density. Transceiver performances at 4 and 10 Gigabits/sec over fiber lengths 10-40km are presented. The active material is extremely robust, resulting in excellent reliability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.