In this article, we report our work on the development of a non- invasive, rapid, robust, and high-fidelity technique that can be used to discriminate between genetic variants. Our study focused on terahertz (THz) spectroscopy and imaging to distinguish between genetic variants of the Allium genus rapidly and accurately. This was done by measuring the cellular water dynamics of the samples by measuring their evaporation profiles using Laser Feedback Interferometry (LFI) with THz Quantum Cascade Lasers (QCL). The evaporation profiles of the samples were then processed to create trajectories in the amplitude-phase domain, which correlated with cell age, cell type, and the amount of water bound to biomolecules. This technique can differentiate between the members of the Allium genus. The presence of outliers was also studied to determine the effectiveness of the technique for different samples and to negate external influence. This was done to discern the extent of influence of cell biomechanics and biochemistry between genetic variants. We found that within a genus, different species would have different degree of interaction between cellular water and cell biochemistry, which could be clearly mapped out using THz-QCL-based LFI. Based on our observations, we propose that this method could be appropriate for observing minute alterations in cellular water dynamics in real-time, and in the future, has the potential to be employed for rapid and effective genetic discrimination in agricultural and genome conservation applications.
This present collaborative research, undertaken in two different hemispheres, in an effort to address the challenge of early structural and sub-surface assessment of heritage marble architectures, like the Taj Mahal, using two complementary non-contact, non-invasive imaging techniques in the THz spectral range. In our previous work, it was already demonstrated that the complementary techniques of broadband Terahertz Time Domain Imaging (THz-TDI) and microRaman spectroscopy are successful in probing volume and surface damage in marble with Pietra-dura work. In the present work, the unique combination of THz-TDI and highly sensitive THz-Laser Feedback Interferometry (THz-LFI) have been explored to study sub-surface damage and irregularities of marble structures with Pietra-dura motif. These optical techniques hold immense possibility in large-scale architectural restoration projects as they collectively provide accurate structural depth profile up to several inches into the volume of the marble including the strain generated within the structure leading to potential cracks.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.