The validation of the porcine model as a reliable and effective platform for in vitro and vivo dose-escalation trials is central to the success of this study. This model has been extensively studied and proven to be a valuable tool in biomedical research due to its anatomical and physiological similarities to humans. This model has the potential to refine irradiation parameters and investigate immunologic responses for consistent results. These parameters are crucial for attaining the desired therapeutic outcomes and vary depending on clinical conditions, treatment objectives, and the characteristics of the target tissue.
The porcine model has proven to be a highly versatile subject in a wide range of biological research fields. Its usefulness extends to studies on nerve regeneration, immunology, bone biology, and titanium osseointegration, among others. Researchers have found that the similarities between porcine and human physiology make this model an excellent tool for advancing our understanding of complex biological processes. The porcine model can facilitate various light dose escalation trial formats while enabling comprehensive assessments that integrate in vivo dosimetry. This model can also be expanded to characterize tissue optical properties, CT analysis, tissue histology, immune cell profiling, inflammatory response evaluation, histomorphometry, and biomechanical testing. This approach creates a translational framework to integrate in vivo dose-escalation trials and reinforces the importance of precision light dosimetry analysis.
Silicon phantom models have been utilized to calculate light fluence in patients being treated with Photodynamic Therapy (PDT). This application can be utilized for other non-ionizing wavelength therapies such as Photobiomodulation (PBM). We have developed a novel protocol to validate homogeneity for 3-dimensional silicon phantom models of the human maxilla. Accurately quantifying the light profiles of human tissue can accommodate for varying optical properties that occur between subjects. More importantly, this can help optimize light fluence dosimetry calculations to achieve intended results. Silicon models of identical composition were fabricated into two different shapes: 1 flat-planar cylindrical shaped model, 2) non-flat planar (3-dimensional) mold of the human maxilla.
Fabricating homogenous silicon phantom models continues to be a challenge as micro-bubbles can contaminate the compound during the curing process. Integrating both proprietary CBCT and handheld surface acquisition imaging devices confirmed our results to be within 0.5mm of accuracy. This protocol was specifically used to cross-reference and validate homogeneity at various depths of penetration. These results present the first known successful validation of identical silicon tissue phantoms with a flat-planar surface vs. a non-flat 3D planar surface. This proof-of-concept phantom validation protocol is sensitive to the specific variations of 3-dimensional surfaces and can be applied to a workflow used to capture accurate light fluence calculations in the clinical setting.Photodynamic therapy (PDT) is a well-established treatment modality for cancer and other malignant diseases; however, quantities such as light fluence and PDT dose do not fully account for all of the dynamic interactions between the key components involved. In particular, fluence rate (ϕ) effects, which impact the photochemical oxygen consumption rate, are not accounted for. In this preclinical study, reacted reactive oxygen species ([ROS]rx) was investigated as a dosimetric quantity for PDT outcome. The ability of [ROS]rx to predict the cure index (CI) of tumor growth, CI = 1 − k /
View contact details