We report the fabrication of gas sensor elements by pulsed laser deposition in air at atmospheric pressure. We focused our attention on metal-oxide semiconductors, namely, SnO2, TiO2 and MoO3 and studied the samples’ structure and morphology. The deposition technology applied leads to the formation of nanostructures composed of nanoparticles and nano-aggregates. We report preliminary results on the gas-sensing properties of the metal-oxide nanostructures. The sensors were exposed to CO, acetone and ethanol, with the TiO2 nanostructure demonstrating the highest response to CO exposure.
In this work, we present fabrication of ZnO nanostructures by pulsed laser deposition in air at atmospheric pressure. The use of this technology leads to formation of nanostructures composed by nanoparticles and nanoaggregates. These nanostructures possess a large surface-to-volume ratio, which makes them suitable for gas-sensor application. The samples were exposed to NH3 and the effect was investigated of light irradiation on the gas response and recovery time of the sensor element. It was found that the response of the sensor element increases even by irradiation by sunlight. The gas sensing properties of the ZnO nanostructures were compared when irradiated by light of different wavelengths.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.